Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
由Spanner來看Google資料庫的前世今生
Search
Szu-Kai Hsu (brucehsu)
November 07, 2012
Technology
4
280
由Spanner來看Google資料庫的前世今生
2012年秋,網際網路資料庫 @ 國立中正大學資工所
Szu-Kai Hsu (brucehsu)
November 07, 2012
Tweet
Share
More Decks by Szu-Kai Hsu (brucehsu)
See All by Szu-Kai Hsu (brucehsu)
Running Life Lean
brucehsu
0
170
Core Unleashed Part II: Introduction to GobiesVM (and STM) @ RubyKaigi 2014
brucehsu
0
2.1k
[RubyConf.tw 2014] Cores unleashed - Exploiting Parallelism in Ruby with STM
brucehsu
0
2.2k
用 Go 打造程式語言執行環境:實例剖析 [OSDC.tw 2014]
brucehsu
3
2.4k
pickbox @ OSDC.tw 2013 Lightning Talk
brucehsu
0
58
Building Web 2.0 APIs
brucehsu
1
150
Rapid Web Development by Example
brucehsu
3
3.1k
TechWed@CCU #0
brucehsu
2
510
Chromium OS
brucehsu
2
200
Other Decks in Technology
See All in Technology
実践データベース設計 ①データベース設計概論
recruitengineers
PRO
4
2k
Kubernetes における cgroup v2 でのOut-Of-Memory 問題の解決
pfn
PRO
0
440
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
430
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
420
なぜSaaSがMCPサーバーをサービス提供するのか?
sansantech
PRO
4
950
Grafana Meetup Japan Vol. 6
kaedemalu
1
190
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
100
ここ一年のCCoEとしてのAWSコスト最適化を振り返る / CCoE AWS Cost Optimization devio2025
masahirokawahara
1
1k
モダンフロントエンド 開発研修
recruitengineers
PRO
9
6.1k
新規案件の立ち上げ専門チームから見たAI駆動開発の始め方
shuyakinjo
0
640
Nstockの一人目エンジニアが 3年間かけて向き合ってきた セキュリティのこととこれから〜あれから半年〜
yo41sawada
0
170
AI時代にPdMとPMMはどう連携すべきか / PdM–PMM-collaboration-in-AI-era
rakus_dev
0
240
Featured
See All Featured
Music & Morning Musume
bryan
46
6.8k
It's Worth the Effort
3n
187
28k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
830
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
910
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
How to train your dragon (web standard)
notwaldorf
96
6.2k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Facilitating Awesome Meetings
lara
55
6.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Designing Experiences People Love
moore
142
24k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Transcript
由 Spanner來看 Google資料庫 的 前世今⽣生 Szu-Kai Hsu (brucehsu)
Spanner is a scalable multi-version globally-distributed synchronously-replicated database
BigTable
Handling
Handling really
Handling really BIG DATA
key-value
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; key
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; value
distributed
Lack of transaction, think of our first project.
CAP
C A P
Consistency A P
Consistency Availability P
Consistency Availability Partition tolerance
Consistency Availability Partition tolerance Consistency
Megastore
NoSQL datastores are highly scalable, but their limited API and
loose consistency models complicate application development. “ “
In Megastore, data model is declared in a strong-typed schema
strong-typed schema CREATE TABLE User { required int64 user_id; required string name; } PRIMARY KEY(user_id), ENTITY GROUP ROOT;
Based on BigTable BigTable
PRIMARY user_id PRIMARY user_id, nyan_id
Local and Global Indexes are introduced: Local Index Find corresponding
data in entity group Global Index Find corresponding data in external groups Local Index Global Index
(user_id, born,nyan_id) For local index CREATE LOCAL INDEX NyanByBorn ON
Nyan(user_id, born); CREATE LOCAL INDEX NyanByBorn ON Nyan(user_id, born);
Consistency achieved via Paxos algorithm Paxos 2 Replicas 1 Witness
At least
Replica consists of Replication server and Coordinator Replication server Coordinator
write oversee
Witness’ Replication server only writes logs logs
Average Latency: 100-400ms Poor write throughput 100-400ms
Spanner ,finally.
We believe it is better to have application programmers deal
with performance problems due to overuse of transactions as bottlenecks arise, rather than always coding around the lack of transactions. “ “
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping Interleaved rows gain performance
Two-phase commit for distributed transactions Two-phase commit 1Vote Coordinator Participants
Two-phase commit for distributed transactions Two-phase commit 2Commit Coordinator Participants
Locking remains a big issue Locking Especially when someone went
down, causing deadlock, literally.
Paxos is here to rescue, again Paxos will make sure
ALL logs are copied to every replicas. ALL logs
Real Innovation lies in time TrueTime API utilizes atomic clock
& GPS to determine the order of each transactions atomic clock GPS
NewSQL is the new NoSQL and Spanner is the best
example so far.