Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
由Spanner來看Google資料庫的前世今生
Search
Szu-Kai Hsu (brucehsu)
November 07, 2012
Technology
4
290
由Spanner來看Google資料庫的前世今生
2012年秋,網際網路資料庫 @ 國立中正大學資工所
Szu-Kai Hsu (brucehsu)
November 07, 2012
Tweet
Share
More Decks by Szu-Kai Hsu (brucehsu)
See All by Szu-Kai Hsu (brucehsu)
Running Life Lean
brucehsu
0
170
Core Unleashed Part II: Introduction to GobiesVM (and STM) @ RubyKaigi 2014
brucehsu
0
2.1k
[RubyConf.tw 2014] Cores unleashed - Exploiting Parallelism in Ruby with STM
brucehsu
0
2.3k
用 Go 打造程式語言執行環境:實例剖析 [OSDC.tw 2014]
brucehsu
3
2.4k
pickbox @ OSDC.tw 2013 Lightning Talk
brucehsu
0
59
Building Web 2.0 APIs
brucehsu
1
150
Rapid Web Development by Example
brucehsu
3
3.1k
TechWed@CCU #0
brucehsu
2
520
Chromium OS
brucehsu
2
200
Other Decks in Technology
See All in Technology
ソフトウェアエンジニアの生成AI活用と、これから
lycorptech_jp
PRO
0
560
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3k
AWSでAgentic AIを開発するための前提知識の整理
nasuvitz
2
210
新規事業におけるGORM+SQLx併用アーキテクチャ
hacomono
PRO
0
420
初めてのDatabricks Apps開発
taka_aki
1
190
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
310
Performance Insights 廃止から Database Insights 利用へ/transition-from-performance-insights-to-database-insights
emiki
0
320
AI時代におけるデータの重要性 ~データマネジメントの第一歩~
ryoichi_ota
0
700
[VPoE Global Summit] サービスレベル目標による信頼性への投資最適化
satos
0
120
CoRL 2025 Survey
harukiabe
1
220
Dylib Hijacking on macOS: Dead or Alive?
patrickwardle
0
380
AI時代こそ求められる設計力- AWSクラウドデザインパターン3選で信頼性と拡張性を高める-
kenichirokimura
3
350
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Side Projects
sachag
455
43k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Making Projects Easy
brettharned
120
6.4k
Agile that works and the tools we love
rasmusluckow
331
21k
Mobile First: as difficult as doing things right
swwweet
225
10k
How to Ace a Technical Interview
jacobian
280
24k
The Language of Interfaces
destraynor
162
25k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Transcript
由 Spanner來看 Google資料庫 的 前世今⽣生 Szu-Kai Hsu (brucehsu)
Spanner is a scalable multi-version globally-distributed synchronously-replicated database
BigTable
Handling
Handling really
Handling really BIG DATA
key-value
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; key
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; value
distributed
Lack of transaction, think of our first project.
CAP
C A P
Consistency A P
Consistency Availability P
Consistency Availability Partition tolerance
Consistency Availability Partition tolerance Consistency
Megastore
NoSQL datastores are highly scalable, but their limited API and
loose consistency models complicate application development. “ “
In Megastore, data model is declared in a strong-typed schema
strong-typed schema CREATE TABLE User { required int64 user_id; required string name; } PRIMARY KEY(user_id), ENTITY GROUP ROOT;
Based on BigTable BigTable
PRIMARY user_id PRIMARY user_id, nyan_id
Local and Global Indexes are introduced: Local Index Find corresponding
data in entity group Global Index Find corresponding data in external groups Local Index Global Index
(user_id, born,nyan_id) For local index CREATE LOCAL INDEX NyanByBorn ON
Nyan(user_id, born); CREATE LOCAL INDEX NyanByBorn ON Nyan(user_id, born);
Consistency achieved via Paxos algorithm Paxos 2 Replicas 1 Witness
At least
Replica consists of Replication server and Coordinator Replication server Coordinator
write oversee
Witness’ Replication server only writes logs logs
Average Latency: 100-400ms Poor write throughput 100-400ms
Spanner ,finally.
We believe it is better to have application programmers deal
with performance problems due to overuse of transactions as bottlenecks arise, rather than always coding around the lack of transactions. “ “
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping Interleaved rows gain performance
Two-phase commit for distributed transactions Two-phase commit 1Vote Coordinator Participants
Two-phase commit for distributed transactions Two-phase commit 2Commit Coordinator Participants
Locking remains a big issue Locking Especially when someone went
down, causing deadlock, literally.
Paxos is here to rescue, again Paxos will make sure
ALL logs are copied to every replicas. ALL logs
Real Innovation lies in time TrueTime API utilizes atomic clock
& GPS to determine the order of each transactions atomic clock GPS
NewSQL is the new NoSQL and Spanner is the best
example so far.