Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
由Spanner來看Google資料庫的前世今生
Search
Szu-Kai Hsu (brucehsu)
November 07, 2012
Technology
4
300
由Spanner來看Google資料庫的前世今生
2012年秋,網際網路資料庫 @ 國立中正大學資工所
Szu-Kai Hsu (brucehsu)
November 07, 2012
Tweet
Share
More Decks by Szu-Kai Hsu (brucehsu)
See All by Szu-Kai Hsu (brucehsu)
Running Life Lean
brucehsu
0
180
Core Unleashed Part II: Introduction to GobiesVM (and STM) @ RubyKaigi 2014
brucehsu
0
2.1k
[RubyConf.tw 2014] Cores unleashed - Exploiting Parallelism in Ruby with STM
brucehsu
0
2.3k
用 Go 打造程式語言執行環境:實例剖析 [OSDC.tw 2014]
brucehsu
3
2.4k
pickbox @ OSDC.tw 2013 Lightning Talk
brucehsu
0
65
Building Web 2.0 APIs
brucehsu
1
150
Rapid Web Development by Example
brucehsu
3
3.1k
TechWed@CCU #0
brucehsu
2
530
Chromium OS
brucehsu
2
210
Other Decks in Technology
See All in Technology
チームで安全にClaude Codeを利用するためのプラクティス / team-claude-code-practices
tomoki10
5
2.4k
AI with TiDD
shiraji
1
340
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
コールドスタンバイ構成でCDは可能か
hiramax
0
130
純粋なイミュータブルモデルを設計してからイベントソーシングと組み合わせるDeciderの実践方法の紹介 /Introducing Decider Pattern with Event Sourcing
tomohisa
1
590
複雑さを受け入れるか、拒むか? - 事業成長とともに育ったモノリスを前に私が考えたこと #RSGT2026
murabayashi
1
1.2k
スクラムを一度諦めたチームにアジャイルコーチが入ってどう変化したか
kyamashiro73
0
170
技術選定、下から見るか?横から見るか?
masakiokuda
0
180
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
59k
Qiita Bash アドカレ LT #1
okaru
0
170
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
320
旬のブリと旬の技術で楽しむ AI エージェント設計開発レシピ
chack411
1
100
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Are puppies a ranking factor?
jonoalderson
0
2.6k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
4 Signs Your Business is Dying
shpigford
187
22k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.3k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
1k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
94
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Believing is Seeing
oripsolob
0
19
Code Review Best Practice
trishagee
74
19k
Transcript
由 Spanner來看 Google資料庫 的 前世今⽣生 Szu-Kai Hsu (brucehsu)
Spanner is a scalable multi-version globally-distributed synchronously-replicated database
BigTable
Handling
Handling really
Handling really BIG DATA
key-value
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; key
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; value
distributed
Lack of transaction, think of our first project.
CAP
C A P
Consistency A P
Consistency Availability P
Consistency Availability Partition tolerance
Consistency Availability Partition tolerance Consistency
Megastore
NoSQL datastores are highly scalable, but their limited API and
loose consistency models complicate application development. “ “
In Megastore, data model is declared in a strong-typed schema
strong-typed schema CREATE TABLE User { required int64 user_id; required string name; } PRIMARY KEY(user_id), ENTITY GROUP ROOT;
Based on BigTable BigTable
PRIMARY user_id PRIMARY user_id, nyan_id
Local and Global Indexes are introduced: Local Index Find corresponding
data in entity group Global Index Find corresponding data in external groups Local Index Global Index
(user_id, born,nyan_id) For local index CREATE LOCAL INDEX NyanByBorn ON
Nyan(user_id, born); CREATE LOCAL INDEX NyanByBorn ON Nyan(user_id, born);
Consistency achieved via Paxos algorithm Paxos 2 Replicas 1 Witness
At least
Replica consists of Replication server and Coordinator Replication server Coordinator
write oversee
Witness’ Replication server only writes logs logs
Average Latency: 100-400ms Poor write throughput 100-400ms
Spanner ,finally.
We believe it is better to have application programmers deal
with performance problems due to overuse of transactions as bottlenecks arise, rather than always coding around the lack of transactions. “ “
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping Interleaved rows gain performance
Two-phase commit for distributed transactions Two-phase commit 1Vote Coordinator Participants
Two-phase commit for distributed transactions Two-phase commit 2Commit Coordinator Participants
Locking remains a big issue Locking Especially when someone went
down, causing deadlock, literally.
Paxos is here to rescue, again Paxos will make sure
ALL logs are copied to every replicas. ALL logs
Real Innovation lies in time TrueTime API utilizes atomic clock
& GPS to determine the order of each transactions atomic clock GPS
NewSQL is the new NoSQL and Spanner is the best
example so far.