Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
続・小さく始めて大きく育てるMLOps2020 / Start small and grow ...
Search
chck
August 28, 2020
Programming
3
3.6k
続・小さく始めて大きく育てるMLOps2020 / Start small and grow big MLOps2020
PyConJP2020
での発表資料です
chck
August 28, 2020
Tweet
Share
More Decks by chck
See All by chck
CyberAgent AI Lab研修 / Social Implementation Anti-Patterns in AI Lab
chck
0
28
CyberAgent AI Lab研修 / Container for Research
chck
1
2.1k
CyberAgent AI Lab研修 / Code Review in a Team
chck
3
2.1k
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
74
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
3
5.8k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
52
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
30
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
chck
0
40
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
950
Other Decks in Programming
See All in Programming
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
220
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
220
高速開発のためのコード整理術
sutetotanuki
1
400
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
130
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
390
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
470
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
100
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
SourceGeneratorのススメ
htkym
0
200
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
140
要求定義・仕様記述・設計・検証の手引き - 理論から学ぶ明確で統一された成果物定義
orgachem
PRO
1
150
Featured
See All Featured
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
The Curious Case for Waylosing
cassininazir
0
240
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
320
Designing for Performance
lara
610
70k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
180
WENDY [Excerpt]
tessaabrams
9
36k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
53
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
HDC tutorial
michielstock
1
380
Transcript
続・小さく始めて大きく育てる MLOps2020 Yuki IWAZAKI
I am Yuki Iwazaki Research Engineer at CyberAgent, AI Lab
You can find me at @chck 2014- Back/Frontend Engineer (Ruby, Scala, JavaScript) 2016- Data Scientist (Python) 2017- Research Engineer (Python) Hello! 2
What is MLOps? ML lifecycleを運用・管理 するためのPractice 3
What is ML Lifecycle? DS Projectにおける周期的なProcess - Fetch Data -
Preprocessing - Training - Reporting - Deployment https://www.slideshare.net/databricks/mlflow-infrastructure-for-a-complete-machine-learning-life-cycle 4
Fetch Data 5
Preprocessing 6
Training 7
Reporting 8
ML Lifecycleに潜む罠 9
乱立するJupyter Notebook 10
身元不明なデータ 11
再現しない学習結果 12
引き継ぎできない実験コード 13
14 実験管理 できてますか
ブログ記事: 小さく始めて大きく育てるMLOps2020 15
今日から始められる決定版を紹介したい 16
Hydra 17
Hydra 設定パラメータ管理ツール - pip install hydra-core - 複数のYamlを継承 - 順次読込
- Parameter探索にも 18
Hydra 19
Hydra 20
Hydra 21
Hydra defaults: lightgbm_a.yamlをload 22
Hydra defaults: lightgbm_a.yamlをload lightgbm_b.yamlをload 23
Hydra defaults: lightgbm_a.yamlをload lightgbm_b.yamlをload argsでparamsをoverwrite 24
Hydra Multirun Optionによる順次実行 25
MLflow Tracking 26
MLflow Tracking 実験ログの管理ツール - pip install mlflow - clientからserverに送信し たログが保存され、
UIから可視化できる 27
MLflow Tracking Tracking Server Tracking Client User 28
MLflow Tracking Tracking Serverの起動コマンド 内部でgunicornが動いている 29
MLflow Tracking 30
MLflow Tracking 実験一覧 実験結果 31
MLflow Tracking 32
MLflow Tracking before after (with mlflow) 33
MLflow Tracking before after (with mlflow) 34
MLflow Tracking before after (with mlflow) 35
MLflow Tracking 36
MLflow Tracking 37
MLflow Tracking 38
Tracking Serverのすすめ Tracking Server Tracking Client User MLflow or 実験管理系SaaS
39
Kedro 40
Kedro Workflowの管理ツール - pip install kedro - Fetch Data ->
Preprocessing -> Training -> Reporting の流れをPipeline化 41
Kedro Pipeline 42
Kedro Pipeline Data Catalog Pipeline内で共有したいDataを yamlに定義 Data Connectorとその引数を記述 built-inのCSV, SQL,
S3,,, Custom実装も可能 43
Kedro Pipeline Parameters Pipeline内で共有したいParameterを yamlに定義 Hydraとの連携やMLflowに渡す例も 44
Kedro Pipeline Node Pipelineを組み立てる処理の一単位. Python関数で記述 45
Kedro Pipeline Pipeline Data Catalog, Parameterが共有された NodeのChain 46
47
node: preprocessの実行 48
node: train_modelの実行 49
node: report_accuracyの実行 50
Summary 51
今日のまとめ Parameters Track experiments Workflow 52
おわりに 使い回しを意識した健全なML Lifecycleで 未来の自分やProjectの皆を幸せにしましょう まずは1ツールから. 53
References - 小さく始めて大きく育てるMLOps2020 - https://github.com/chck/ml-management-tools/ - ハイパラ管理のすすめ - ハイパーパラメータをHydra+MLflowで管理しよう -
MLFlowと他ツールの組み合わせ 54
You can find me at ◉ speakerdeck.com/chck ◉ github.com/chck ◉
facebook.com/chck1245 Thanks! 55 ←この発表資料
Appendix 56
Deploymentまで管理するには - こんなのがあります - library依存 - TensorFlow Serving - TorchServe
... - Cloud依存 - SageMaker - AI Platform ... 57
MLOps Yes/No Chart 58