Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 / GUIGAN: Learning to Generate GUI Design...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
chck
January 18, 2022
Research
0
41
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
社内論文読み会、PaperFridayでの発表資料です
chck
January 18, 2022
Tweet
Share
More Decks by chck
See All by chck
CyberAgent AI Lab研修 / Social Implementation Anti-Patterns in AI Lab
chck
0
32
CyberAgent AI Lab研修 / Container for Research
chck
1
2.1k
CyberAgent AI Lab研修 / Code Review in a Team
chck
3
2.1k
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
74
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
3
5.8k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
52
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
30
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
950
Web系企業研究所における研究開発を加速させるエコシステム / Ecosystem accelerates our R&D in CyberAgent AI Lab
chck
0
160
Other Decks in Research
See All in Research
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
2026.01ウェビナー資料
elith
0
220
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
440
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
140
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Featured
See All Featured
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
Paper Plane
katiecoart
PRO
0
46k
Done Done
chrislema
186
16k
Building an army of robots
kneath
306
46k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
[SF Ruby Conf 2025] Rails X
palkan
1
760
How to make the Groovebox
asonas
2
1.9k
Prompt Engineering for Job Search
mfonobong
0
160
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Transcript
GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
22/01/18 PaperFriday, Yuki Iwazaki@AI Lab
2 Point: スマホアプリのGUIを生成するタスクで、 Pixelではなくボタンなどの要素から逐次的に生成 定量・定性評価で従来手法を圧倒 arXiv, 2021 Authors: Tianming Zhao,
Chunyang Chen, Yuanning Liu, Xiaodong Zhu 選定理由: - Landing Pageの生成に使えそうなので
Introduction 3
優れたGUIはProductの成功に直結する 4 Rico dataset [Deka, 17]
GUIのデザインは大変 • Fluent interactivity • Universal usability • Clear readability
• Aesthetic appearance • Consistent styles 😥 UI/UX designers shortage in the market 😥 51% of 5700 developers reported, GUI design > dev task 😥 They almost aren’t familiar with UI/UX design 5 https://material.io/
GUIデザインを自動生成する GUIGANを提案 6
Preliminary 8
RICO Dataset [Deka, 17] 9 https://interactionmining.org/rico
GUI Subtree 10
GAN [Goodfellow, 14] • 識別モデル(D)を用いて学習データと見分けがつかないような データを生成するモデル(G)を獲得する仕組み ◦ Gは一様分布等からサンプルされた乱数zを入力とし出力x’を生成 ◦ Dは入力データが学習データか生成データ(x’)かを分類
◦ 自然画像の生成などで大きく成功 ◦ 生成した値を用いて学習が進むので文章等の離散値の生成は苦手 11 [Karras, 18]
SeqGAN [Yu, 17] 12 GANを文章などの系列データに拡張 GeneratorにRNNと強化学習を適用 D…文章全体が本物か偽物か識別(GANと同じ) G…state(生成途中の文章 )から action(次の単語)を出力する
policyと仮定 生成途中の評価はMC探索で生成完了させた文を Dに入力し本物と判断する確率 (自然な文章度合い)をGの報酬とし, 報酬が最大化するような (≒Dに実データと誤認してもらえるような )GのActionを学習 -> Gにシミュレーションで文章をいくつか作らせた結果の Dの期待報酬を Gに与えて学習 Discriminatorの学習 Generatorの学習
Approach 15
GUIGAN 16 state action SeqGAN 生成途中の文章 次の単語 GUIGAN 生成途中のGUI 次のGUIパーツ
A. Style Embedding of Subtree ペアで入力されたGUIのパーツ画像が同じ App(Class)出身なら 出力される特徴空間上で近づけ、違う Appなら遠ざけるように学習 ->
GUIパーツ(Subtree)のStyle Embeddingを得る 17
B. Modeling Subtree Compatibility GUIパーツのスタイル互換性 (compatibility)のモデル化 Generatorで生成されたGUIは, 各パーツ (Subtree)の参照元 AppがIDから割り出せる
参照元が同じ Appのパーツで構成される GUIほど評価されるように 学習 18 App GのEntropy App Cを条件としたときの GのEntropy 生成された GUIを 構成するパーツが 単一のAppだけである割合 cはAppの総数 同じAppのパーツが含まれるように lossを最小化 生成物のパーツが全て同じ App産の時loss_c=0
C. Modeling Subtree Structure GUIパーツの構造情報(structure)のモデル化 Generatorで生成されたGUIは, 各パーツ (Subtree)の種類もIDから割り出せる ここでいうパーツの種類とは ,
ListViewやFrame, Menu barなどのComponentカテゴリ 生成された GUIと実GUIのパーツの種類の順番が近い (≒編集距離が小さい )ほど 良い構造 となるように学習 19
Model Summary 20 Dを欺く程の生成 スタイルの互換性 GUIの構造整合性
Experiments 23
Dataset Rico Datasetのうちデータ数 の多い5カテゴリを抽出 -> カテゴリの特徴を捉えた GUIを生成できるか 更にアプリ数の多い3社も Datasetとして抽出 ->
特定企業らしいGUIを 生成できるか 24
Metrics Frechet Inception Distance (FID): 生成画像の品質と多様性の評価に使われる 生成されたGUIと本物のGUIを画像Encoder(InceptionV3)に食わせて出 力Vectorの分布間の距離を測る -> 本物と分布が近い程,
生成したGUIの品質が高いといえるので FIDは低い程良い 1-Nearest Neighbor Accuracy: 生成されたGUIか, 本物のGUIかの分類精度 -> 生成モデルの性能が良い程間違えるはずなのでAccは低いほど良い 25
Baselines • WGAN-GP [Gulrajani, 17] ◦ 勾配消失問題と収束速度を改善した生成モデル • FaceOff [Zheng,
19] ◦ DOM TreeベースのWebサイト探索モデル • GUIGAN-style ◦ style lossだけで学習させた提案手法 • GUIGAN-structure ◦ structure lossだけで学習させた提案手法 26
Evaluation Results 27
28 https://github.com/GUIDesignResearch/GUIGAN#examples-of-pre-built-components
Evaluation Results 29
30
31
Human Evaluation Android App開発経験のある CS専攻のMaster 5名 Rico 5大カテゴリのGUIを FaceOff, GUIGAN各10サンプルず
つ生成した結果に右の評価 以下3項目について 5段階評価 - Aesthetics - Color harmony - Structure 以下1項目は(0 or 1) - Functionality 32
Evaluation Results 33 • 5段階評価の3指標において どのカテゴリでも提案手法が 既存の3割増で良い評価に • 検定でも提案手法が有意に (*と**)
• Functionalityもavg. 0.812で既存 (0.452)の8割増 • “Travel > Books, Shopping”の結果 は、Travelの方が機能的なGUIを持つた め
34
Conclusion 35
Conclusion • GANによるGUIデザイン生成手法を提案 ◦ Style, Structure両方を加味した生成が可能に • 今後の課題 ◦ GUIにおけるルールの条件付与
▪ menu barは上にあるべきなど ◦ 人間によるEditableなInterfaceと組み合わせる ▪ GUI開発の半自動化, Human-in-the-loop 36
Comment • パーツの切り出しが一番大変そう • 生成されたGUIがUserにそのまま採用されるわけじゃ ないのでオンライン評価が難しそう • Editableではないので出力制御が難しそう ◦ StyleとStructureのバランス調整もできなそう
37