Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Dagster & Geomagical
Search
Noah Kantrowitz
February 09, 2021
Programming
0
170
Dagster & Geomagical
Noah Kantrowitz
February 09, 2021
Tweet
Share
More Decks by Noah Kantrowitz
See All by Noah Kantrowitz
The Long Hello World
coderanger
0
14
The Long Hello World (with notes)
coderanger
0
45
What Python Can Learn From Other Languages
coderanger
0
76
What Python Can Learn From Other Languages (with notes)
coderanger
0
190
Swiss Army Django: Small Footprint ETL (with notes) - DjangoCon US
coderanger
0
300
Swiss Army Django: Small Footprint ETL - DjangoCon US
coderanger
0
76
How to look at space: PyCon AU
coderanger
0
130
Swiss Army Django: Small Footprint ETL
coderanger
0
110
Swiss Army Django: Small Footprint ETL (with notes)
coderanger
0
98
Other Decks in Programming
See All in Programming
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
140
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
130
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
290
Go コードベースの構成と AI コンテキスト定義
andpad
0
140
AIコーディングエージェント(Gemini)
kondai24
0
280
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
120
SwiftUIで本格音ゲー実装してみた
hypebeans
0
510
複雑なUI設計への銀の弾丸 「オブジェクト指向UIデザイン」
teamlab
PRO
2
110
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.3k
クラウドに依存しないS3を使った開発術
simesaba80
0
180
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
3.1k
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
650
Featured
See All Featured
Paper Plane (Part 1)
katiecoart
PRO
0
2.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
38
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.7k
What's in a price? How to price your products and services
michaelherold
246
13k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Rails Girls Zürich Keynote
gr2m
95
14k
Building Adaptive Systems
keathley
44
2.9k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
31
Transcript
Geomagical & Dagster Dagster Community Meeting
Noah Kantrowitz > @kantrn - coderanger.net > Principal Ops @
Geomagical > Part of the IKEA family > Augmented reality with furniture
Our Product
Starting Point > Celery & RabbitMQ > Each operation as
its own daemon > celery.canvas > Custom DAG compiler
Design Goals > Keeping most of the solid structure >
Improved DAG expressiveness > Low fixed overhead, compatible with autoscaling > More detailed tracking and metrics
Dagster > Met all our requirements for structural simplicity >
DAG compiler was a bit limited but growing fast > Highly responsive team Dagster > No execution setup that met our needs
But dagster_celery? > Solid and pipeline code commingled > Single
runtime environment > Hard to build a workflow around at scale
But dagster_k8s? > Fine for infrequent or non-customer facing tasks
> Do not put kube-apiserver in your hot path > No really, I mean it
None
Autoscaling > KEDA watching RabbitMQ > Zero-scale: only Dagit and
gRPC daemons > task_acks_late = True > worker_prefetch_multiplier = 1
Remote Solids > Independent release cycles for each Solid >
Can run multiple versions in parallel > Testing in isolation
Writing A Remote Solid app = SolidCelery('repo-something') @app.task(bind=True) def something(self,
foo: str) -> str: return f'Hello {foo}'
Proxy Solids @celery_solid(queue='repo-something') def something(context, item): output = yield {
'foo': item['bar'], } item['something'] = output yield Output(item)
Workflow > One git repo per Dagster repo > main.py
which holds "default" Pipeline > solids.py which defines proxy Solids > Misc other pipelines for testing and development
CI/CD Briefly, since this is its own rabbit hole >
Buildkite > kustomize edit set image > ArgoCD
Downsides > Slow cold start > No feedback during long
tasks > New and exciting bugs
How It's Going > Happy with overall progress > Still
dropping some tasks at load > Plan to move forward looks good
Future Plans > Async execution support > Events from solid
workers > Pipeline-level webhooks > Predictive auto-scaling? K8s Operator?
Can I Use This? Kinda sorta geomagical/dagster_geomagical
Thank You Questions?