Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Paper-Survey: Objects as Points
Search
fam_taro
April 19, 2019
Science
0
2.3k
Paper-Survey: Objects as Points
fam_taro
April 19, 2019
Tweet
Share
More Decks by fam_taro
See All by fam_taro
NeRFの概要と 派生系についてのふんわり紹介
fam_taro
3
4k
実践 PyTorch Lightning (2019/11/30 分析コンペLT会 #1)
fam_taro
3
4.4k
Paper:ShapeMask
fam_taro
0
57
Summary: Objects as Points
fam_taro
0
3.1k
Tensorコアを使った PyTorch の高速化について
fam_taro
4
3.8k
Sequence to Sequence Learning with Neural Networks
fam_taro
1
1k
Other Decks in Science
See All in Science
ほたるのひかり/RayTracingCamp10
kugimasa
0
410
ultraArmをモニター提供してもらった話
miura55
0
200
ICRA2024 速報
rpc
3
5.5k
大規模言語モデルの開発
chokkan
PRO
84
35k
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.6k
機械学習による確率推定とカリブレーション/probabilistic-calibration-on-classification-model
ktgrstsh
2
280
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1k
統計学入門講座 第1回スライド
techmathproject
0
130
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_LT版
hayataka88
0
990
Introduction to Graph Neural Networks
joisino
PRO
4
2.1k
LIMEを用いた判断根拠の可視化
kentaitakura
0
370
Coqで選択公理を形式化してみた
soukouki
0
230
Featured
See All Featured
Bash Introduction
62gerente
608
210k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
The Invisible Side of Design
smashingmag
298
50k
Side Projects
sachag
452
42k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Six Lessons from altMBA
skipperchong
27
3.5k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
Optimizing for Happiness
mojombo
376
70k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Practical Orchestrator
shlominoach
186
10k
Transcript
จLT: Objects as Points h"ps:/ /arxiv.org/abs/1904.07850 2019/04/19 ౻ຊ༟հ 1
࣍ • ஶऀใ • ֓ཁ • ͜Ε·ͰͷϞσϧͱͷҧ͍ • ਫ਼ •
ͦͷଞײ 2
ஶऀใ • Xingyi Zhou(UT Aus1n) • Dequan Wang(UC Berkeley) •
Philipp Krähenbühl(UT Aus1n) 3
ಛ • ମݕग़Ϟσϧ • ༗໊ͳྫ: SSD, YOLOv3, Re.naNet, M2Det... •
ݕग़ͷΈͳΒͣ࢟ɾdepthɾ͖ɾ3d size ʹద༻͍ͯ͠Δ • backbone ͱͯ͠ DLA(deep layers aggrega.on) Hourglass(CornerNet Ͱ ༻) Λ༻ 4
ಛ • bounding box ΛΘͣʹݕग़Λߦ͏Ϟσϧ(keypointਪఆ) • bounding box ༻ͷ grid
ͷΘΓʹ͕ࡉ͔͍ heatmap(H, W Λ4Ͱׂͬͨఔ ͷͷ) Λग़ྗ • heatmap ͕ߴ͍ॴ() Λମͷத৺ͱਪఆ • த৺ͱͳΔॴͷ feature ͔Βମͷେ͖͞ɾࢄԽޡࠩΛਪఆ • ࢄԽޡࠩ = heatmap ʹͨ͠ࡍͷޡࠩ • େ͖͞ʹ͍ͭͯ scale ͍ͯ͠ͳ͍(ͦͷ··ͷ) 5
ಛ • ༧ଌϘοΫε = heatmap ͷ࠲ඪ + ༧ଌϘοΫεαΠζ + ༧ଌࢄԽޡࠩ
• ֶशʹ͏ heatmap ͷ 1ମʹ͖ͭ 1ͭͷΈ • SSD ͷΑ͏ʹ IoU ͷॏͳΓ۩߹Ͱ background ͔൱͔Λ͚ͳ͍ • ෳ box ग़͞ͳ͍͜ͱΛલఏͱ͍ͯ͠Δ • ಉ͡ΫϥεͰॏͳͬͯ͠·͏߹͕͋Δ͕શମͷ 0.1 % ະຬͰ RCNN(2% ະ ຬ) ΑΓখ͍͞ 6
Πϝʔδਤ 7
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetശͷॏͳΓͰͳ͘ҐஔͷΈʹج͍ͮͯʮΞϯΧʔʯΛׂ • લܠͱഎܠͷྨʹؔ͢Δखಈͷ͖͍͠ͳ͍(IoU 0.5 > ͱ͔) • ମຖʹϙδςΟϒͳΞϯΧʔ1͚ͭͩͳͷͰ NMS Λඞཁͱ͠ͳ͍ • We simply extract local peaks in the keypoint heatmap • keypoint heatmap ͔ΒϩʔΧϧϐʔΫΛநग़͢Δ͚ͩͰྑ͍ 8
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetΑΓେ͖ͳग़ྗղ૾Λ͏ • mask r-cnn ͱ͔ͱൺֱͯ͠ • output stride of 16 • ͜ΕʹΑΓෳͷΞϯΧʔ͕ෆཁͱͳΔʁʁʁʁ • [1711.08189] An Analysis of Scale Invariance in Object Detec*on - SNIP 9
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on by keypoint es*ma*on(CornerNet, ExtremeNet )ͱͷҧ͍ •
্ه 2ͭ keypoint ݕग़ޙʹ Έ߹ΘͤΛ grouping ͢Δඞཁ͕͋Δ • ͘ͳͬͯ͠·͏ • CenterNet ඞཁͱ͠ͳ͍ • ͍ʂ 10
ਫ਼ 11
ਫ਼(M2Det ͷ݁ՌΛࢹͰՃͯ͠Έͨ) 12
ͦͷଞײ • Backbone ͱͯ͠ DLA Λ͑ΔͷΛॳΊͯͬͨ • Ή͠Ζ DLA ॳΊͯΓ·ͨ͠
! • NMS ͕ෆཁʹͳΔͷຯʹخ͍͠ • anchor ͕ফ͑Δͷخ͍͠ • খ͍͞ମʹରͯ͠ͲΕ͚ͩରԠͰ͖Δ͔֬ೝ͠ͳ͍ͱ 13