Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Paper-Survey: Objects as Points
Search
fam_taro
April 19, 2019
Science
0
2.3k
Paper-Survey: Objects as Points
fam_taro
April 19, 2019
Tweet
Share
More Decks by fam_taro
See All by fam_taro
NeRFの概要と 派生系についてのふんわり紹介
fam_taro
3
4.2k
実践 PyTorch Lightning (2019/11/30 分析コンペLT会 #1)
fam_taro
3
4.5k
Paper:ShapeMask
fam_taro
0
70
Summary: Objects as Points
fam_taro
0
3.2k
Tensorコアを使った PyTorch の高速化について
fam_taro
4
4k
Sequence to Sequence Learning with Neural Networks
fam_taro
1
1.1k
Other Decks in Science
See All in Science
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
190
データベース08: 実体関連モデルとは?
trycycle
PRO
0
930
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
1k
Lean4による汎化誤差評価の形式化
milano0017
1
300
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
130
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
610
Symfony Console Facelift
chalasr
2
470
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
610
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
150
My Favourite Book in 2024: Get Rid of Your Japanese Accent
lagenorhynque
1
110
KH Coderチュートリアル(スライド版)
koichih
1
46k
CV_3_Keypoints
hachama
0
200
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
RailsConf 2023
tenderlove
30
1.2k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Optimizing for Happiness
mojombo
379
70k
Making Projects Easy
brettharned
117
6.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Automating Front-end Workflow
addyosmani
1370
200k
A better future with KSS
kneath
239
17k
Transcript
จLT: Objects as Points h"ps:/ /arxiv.org/abs/1904.07850 2019/04/19 ౻ຊ༟հ 1
࣍ • ஶऀใ • ֓ཁ • ͜Ε·ͰͷϞσϧͱͷҧ͍ • ਫ਼ •
ͦͷଞײ 2
ஶऀใ • Xingyi Zhou(UT Aus1n) • Dequan Wang(UC Berkeley) •
Philipp Krähenbühl(UT Aus1n) 3
ಛ • ମݕग़Ϟσϧ • ༗໊ͳྫ: SSD, YOLOv3, Re.naNet, M2Det... •
ݕग़ͷΈͳΒͣ࢟ɾdepthɾ͖ɾ3d size ʹద༻͍ͯ͠Δ • backbone ͱͯ͠ DLA(deep layers aggrega.on) Hourglass(CornerNet Ͱ ༻) Λ༻ 4
ಛ • bounding box ΛΘͣʹݕग़Λߦ͏Ϟσϧ(keypointਪఆ) • bounding box ༻ͷ grid
ͷΘΓʹ͕ࡉ͔͍ heatmap(H, W Λ4Ͱׂͬͨఔ ͷͷ) Λग़ྗ • heatmap ͕ߴ͍ॴ() Λମͷத৺ͱਪఆ • த৺ͱͳΔॴͷ feature ͔Βମͷେ͖͞ɾࢄԽޡࠩΛਪఆ • ࢄԽޡࠩ = heatmap ʹͨ͠ࡍͷޡࠩ • େ͖͞ʹ͍ͭͯ scale ͍ͯ͠ͳ͍(ͦͷ··ͷ) 5
ಛ • ༧ଌϘοΫε = heatmap ͷ࠲ඪ + ༧ଌϘοΫεαΠζ + ༧ଌࢄԽޡࠩ
• ֶशʹ͏ heatmap ͷ 1ମʹ͖ͭ 1ͭͷΈ • SSD ͷΑ͏ʹ IoU ͷॏͳΓ۩߹Ͱ background ͔൱͔Λ͚ͳ͍ • ෳ box ग़͞ͳ͍͜ͱΛલఏͱ͍ͯ͠Δ • ಉ͡ΫϥεͰॏͳͬͯ͠·͏߹͕͋Δ͕શମͷ 0.1 % ະຬͰ RCNN(2% ະ ຬ) ΑΓখ͍͞ 6
Πϝʔδਤ 7
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetശͷॏͳΓͰͳ͘ҐஔͷΈʹج͍ͮͯʮΞϯΧʔʯΛׂ • લܠͱഎܠͷྨʹؔ͢Δखಈͷ͖͍͠ͳ͍(IoU 0.5 > ͱ͔) • ମຖʹϙδςΟϒͳΞϯΧʔ1͚ͭͩͳͷͰ NMS Λඞཁͱ͠ͳ͍ • We simply extract local peaks in the keypoint heatmap • keypoint heatmap ͔ΒϩʔΧϧϐʔΫΛநग़͢Δ͚ͩͰྑ͍ 8
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetΑΓେ͖ͳग़ྗղ૾Λ͏ • mask r-cnn ͱ͔ͱൺֱͯ͠ • output stride of 16 • ͜ΕʹΑΓෳͷΞϯΧʔ͕ෆཁͱͳΔʁʁʁʁ • [1711.08189] An Analysis of Scale Invariance in Object Detec*on - SNIP 9
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on by keypoint es*ma*on(CornerNet, ExtremeNet )ͱͷҧ͍ •
্ه 2ͭ keypoint ݕग़ޙʹ Έ߹ΘͤΛ grouping ͢Δඞཁ͕͋Δ • ͘ͳͬͯ͠·͏ • CenterNet ඞཁͱ͠ͳ͍ • ͍ʂ 10
ਫ਼ 11
ਫ਼(M2Det ͷ݁ՌΛࢹͰՃͯ͠Έͨ) 12
ͦͷଞײ • Backbone ͱͯ͠ DLA Λ͑ΔͷΛॳΊͯͬͨ • Ή͠Ζ DLA ॳΊͯΓ·ͨ͠
! • NMS ͕ෆཁʹͳΔͷຯʹخ͍͠ • anchor ͕ফ͑Δͷخ͍͠ • খ͍͞ମʹରͯ͠ͲΕ͚ͩରԠͰ͖Δ͔֬ೝ͠ͳ͍ͱ 13