Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Greenlet-based concurrency
Search
Goran Peretin
July 03, 2013
Programming
2
650
Greenlet-based concurrency
Slides from EuroPython 2013 talk Greenlet-based concurrency.
Goran Peretin
July 03, 2013
Tweet
Share
More Decks by Goran Peretin
See All by Goran Peretin
Webcamp Zagreb 2013
gperetin
1
320
On Concurrency
gperetin
1
390
WebcampZG 2012
gperetin
1
430
Other Decks in Programming
See All in Programming
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
140
配送計画の均等化機能を提供する取り組みについて(⽩⾦鉱業 Meetup Vol.21@六本⽊(数理最適化編))
izu_nori
0
140
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
200
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
110
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
360
AIコーディングエージェント(Manus)
kondai24
0
160
これだけで丸わかり!LangChain v1.0 アップデートまとめ
os1ma
6
1.7k
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
300
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
110
なあ兄弟、 余白の意味を考えてから UI実装してくれ!
ktcryomm
11
11k
Cap'n Webについて
yusukebe
0
120
生成AIを利用するだけでなく、投資できる組織へ
pospome
0
240
Featured
See All Featured
Making Projects Easy
brettharned
120
6.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
A Tale of Four Properties
chriscoyier
162
23k
Speed Design
sergeychernyshev
33
1.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Practical Orchestrator
shlominoach
190
11k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Bash Introduction
62gerente
615
210k
GitHub's CSS Performance
jonrohan
1032
470k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
Greenlet-based concurrency Goran Peretin @gperetin
Who am I? ✤ Freelancer ✤ Interested in concurrent, parallel
and distributed systems
What is this about? ✤ understand what <buzzword> is ✤
when should you use <buzzword> ✤ concurrency as execution model (as opposed to composition model)
There will be no... ✤ Turnkey solutions ✤ GIL ✤
Details
Buzzwords ahead!
✤ concurrent vs parallel execution ✤ cooperative vs preemptive multitasking
✤ CPU bound vs IO bound task ✤ thread-based vs event-based concurrency
Mandatory definitions
Parallel execution ✤ Simultaneous execution of multiple tasks ✤ Must
have multiple CPUs
Concurrent execution ✤ Executing multiple tasks in the same time
frame ✤ ... but not necessarily at the same time ✤ Doesn’t require multiple CPU cores
Why do we want concurrent execution? ✤ We need it
- more tasks than CPUs ✤ CPU is much faster than anything else
Thread-based concurrecy ✤ Executing multiple threads in the same time
frame ✤ OS scheduler decides which thread runs when
How OS scheduler switches tasks? ✤ When current thread does
IO operation ✤ When current thread used up it’s time slice
How OS scheduler switches tasks? ✤ When current thread does
IO operation ✤ When current thread used up it’s time slice Preemptive multitasking
None
Mandatory GIL slide ✤ Global Interpreter Lock ✤ One Python
interpreter can run just one thread at any point in time ✤ Only problem for CPU bound tasks
CPU bound vs IO bound ✤ CPU bound - time
to complete a task is determined by CPU speed ✤ calculating Fibonacci sequence, video processing... ✤ IO bound - does a lot of IO, eg. reading from disk, network requests... ✤ URL crawler, most web applications...
Python anyone? ✤ import threading ✤ Python threads - real
OS threads
Houston, we have a...
Problem? ✤ Lots of threads ✤ Thousands
Benchmarks!
Sample programs ✤ Prog 1: spawn some number of threads
- each sleeps 200ms ✤ Prog 2: spawn some number of threads - each sleeps 90s
Prog 1 ✤ Sleep 200ms # of threads 100 1K
10K 100K Time 207 ms 327 ms 2.55 s 25.42 s
Prog 2 ✤ Sleep 90s # of threads 100 1K
10K 100K RAM ~4.9 GB ~11.8 GB ~82GB ? (256GB)
... and more ✤ Number of threads is limited ✤
Preemptive multitasking
We need ✤ Fast to create ✤ Low memory footprint
✤ We decide when to switch
Green threads!
Green threads ✤ Not managed by OS ✤ 1:N with
OS threads ✤ User threads, light-weight processes
Greenlets ✤ “...more primitive notion of micro- thread with no
implicit scheduling; coroutines, in other words.” ✤ C extension
Greenlets ✤ Micro-thread ✤ No implicit scheduling ✤ Coroutines
Coroutine ✤ Function that can suspend it’s execution and then
later resume ✤ Can also be implemented in pure Python (PEP 342) ✤ Coroutines decide when they want to switch
Coroutine ✤ Function that can suspend it’s execution and then
later resume ✤ Can also be implemented in pure Python (PEP 342) ✤ Coroutines decide when they want to switch Cooperative multitasking
Cooperative multitasking ✤ Each task decides when to give others
a chance to run ✤ Ideal for I/O bound tasks ✤ Not so good for CPU bound tasks
Using greenlets ✤ We need something that will know which
greenlet should run next ✤ Our calls must not block ✤ We need something to notify us when our call is done
Using greenlets ✤ We need something that will know which
greenlet should run next ✤ Our calls must not block ✤ We need something to notify us when our call is done Scheduler
Using greenlets ✤ We need something that will know which
greenlet should run next ✤ Our calls must not block ✤ We need something to notify us when our call is done Scheduler Event loop
Event loop ✤ Listens for events from OS and notifies
your app ✤ Asynchronous
None
✤ Scheduler ✤ Event loop Greenlets + ...
Gevent
Gevent ✤ “...coroutine-based Python networking library that uses greenlet to
provide a high-level synchronous API on top of the libevent event loop.”
None
Prog 1 ✤ Sleep 200ms # of threads 100 1K
10K 100K Time 207 ms 327 ms 2.55 s 25.42 s # of Greenlets 100 1K 10K 100K Time 204 ms 223 ms 421 ms 3.06 s
Prog 2 ✤ Sleep 90s # of threads 100 1K
10K 100K RAM 4.9 GB 11.8 GB 82GB ? (256GB) # of Greenlets 100 1K 10K 100K Time 33 MB 41 MB 114 MB 858 MB
Gevent ✤ Monkey-patching ✤ Event loop
Disadvantages ✤ Monkey-patching ✤ Doesn’t work with C extensions ✤
Greenlet implementation details ✤ Hard to debug
Alternatives ✤ Twisted ✤ Tornado ✤ Callback based
PEP 3156 & Tulip ✤ Attempt to standardize event loop
API in Python ✤ Tulip is an implementation
Recap ✤ Concurrent execution helps with IO bound applications ✤
Use threads if it works for you ✤ Use async library if you have lots of connections
Thank you! ✤ Questions?
Resources ✤ http:/ /dabeaz.com/coroutines/Coroutines.pdf ✤ http:/ /www.gevent.org/ ✤ http:/ /greenlet.readthedocs.org/en/latest/