Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 11月7日
Search
gumigumi7
October 31, 2018
0
140
文献紹介 11月7日
Explicit Retrofitting of Distributional Word Vectors
gumigumi7
October 31, 2018
Tweet
Share
More Decks by gumigumi7
See All by gumigumi7
文献紹介 1月24日
gumigumi7
0
250
文献紹介 10月3日
gumigumi7
0
330
文献紹介 9月3日
gumigumi7
0
270
文献紹介 8月10日
gumigumi7
0
130
文献紹介 7月16日
gumigumi7
0
260
文献紹介 6月12日
gumigumi7
0
330
文献紹介 5月16日
gumigumi7
0
190
文献紹介 4月18日
gumigumi7
0
150
文献紹介 12月15日
gumigumi7
0
120
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
エンジニアに許された特別な時間の終わり
watany
106
230k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
58
50k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
68
Embracing the Ebb and Flow
colly
88
5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
30 Presentation Tips
portentint
PRO
1
230
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Code Review Best Practice
trishagee
74
20k
Transcript
Goran Glavas, Ivan Vulic Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Long Papers), pages 34–45
)4 2 n 8"* %Retrofitting 51' ,+:&(Word vector space specialization
0 38#-/ n 96 96 ! $2.7
.& 3 n *4 #/NLP ,60 n
*4 #12,)-5*4+7*4 8%!"$ -34(' 9
5' 4 n Word vector space specialization l !$3LHGV=4 *JI:+
3L!$M9C l $%$@? 1PB(3L8O n Retrofitting l 3LD!$4 0TSE R>N9C l 0TSE2.!$@? ,QUV&6 n 2 9CK- explicit retrofitting (ER) ;A l 7)F!$/<"%#$ 3L
5 n ! n !
"$ 6 n 3)+-* !%& 1/+- l Ex) car
– automobile - car – drive - n Negative Sampling l '0 #-K+,2 (.
") 7 n .!" #" 2,. !# #"
′ %1&%(#" ; ()- l (: 0 n /' 2 +*1&$(
8 n 2"#%$ Mean Square Distance Objective (ER-MSD) n
!": #% (&!" 0 ) n !($% , $' ): #%$ ( &, #% )
9 n )$%$% '! ' Contrastive Objective (ER-CNT) n
!": &( ()$% 0 ") n !′: &( ' !(%& , %( ) # n ER-MSD )$%$%
'+ 10 n .1 %#&",2$ *!3 Topological Regularization
n !: ER-MSD ER-CNT -,2( n ": *0! *! )/, -,2( !# = ! + "!&'(
3G 11 n &+2> $ Word2Vec, GloVe, FastText ': n
F=@4=@5( WordNet, Roget’s Thesaurus ': l 1,023,082F=@ 380,8734=@5( l !%.@7 57,320@1 → Retrofitting /E )<.@06 ,8;? n ACB7!(#$ , #& )!%#AC': 9*-D" %(0.3:
12 n n
l Word Similarity (SimLex-999, SimVerb-3500) l Language Transfer n l Lexical Text Simplification (LIGHT-LS) l Dialog State Tracking
7- (Word Similarity) 13 • SimLex 4 %#< !6>'&$ +.095(;=
• :23 Attract-Repel !6&$," 8*&$)/ 1 ,"
/* (Lexical Text Simplification) 14 • Retrofitting (, Attract-Repel
% 2'135 • #. 59.6% Attract-Repel %"!' +$'1 7 A: Accuracy (-&), C: Changes ( 640))
-* (Lexical Text Simplification) 15 • 1+ $."!2 3 )
%04& (,villain(%#) Attract-Repel protagonist(#)/' • ER-CNT demon(5)/'
16 n Retrofitting Word vector space specialization =*
3 #"%$4916 n WordNet (<.+ ,* :/-2 8)0>'!#7; n Word Similarity Lexical Simplification A& 5.!#?0>@B