Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 7月16日
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
gumigumi7
July 16, 2018
0
260
文献紹介 7月16日
Probabilistic FastText for Multi-Sense Word Embeddings
gumigumi7
July 16, 2018
Tweet
Share
More Decks by gumigumi7
See All by gumigumi7
文献紹介 1月24日
gumigumi7
0
250
文献紹介 11月7日
gumigumi7
0
140
文献紹介 10月3日
gumigumi7
0
330
文献紹介 9月3日
gumigumi7
0
270
文献紹介 8月10日
gumigumi7
0
130
文献紹介 6月12日
gumigumi7
0
330
文献紹介 5月16日
gumigumi7
0
190
文献紹介 4月18日
gumigumi7
0
150
文献紹介 12月15日
gumigumi7
0
120
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Thoughts on Productivity
jonyablonski
74
5k
The browser strikes back
jonoalderson
0
420
Agile that works and the tools we love
rasmusluckow
331
21k
The SEO identity crisis: Don't let AI make you average
varn
0
330
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
110
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
98
[SF Ruby Conf 2025] Rails X
palkan
1
760
So, you think you're a good person
axbom
PRO
2
1.9k
BBQ
matthewcrist
89
10k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Transcript
) ( Probabilistic FastText for Multi-Sense Word Embeddings
▪ ▪ Mikhail Khodak, Nikunj Saunshi, Yingyu Liang,
Tengyu Ma, Brandon Stewart, Sanjeev Arora. ▪ Probabilistic FastText for Multi-Sense Word Embeddings. ▪ Proceedings of the Association of Computational Linguistics. 2018. ▪ ▪ GaussianMixtureSense Embedding 2
▪ n o V e dT WG oe2 W
W ▪ V e a i M V a c ▪ V a n o 3
▪ e c V ▪ ▪ c V c
W ▪ e c ” ” ▪ fastText ▪ Word2Vec subwordc V c 2 ▪ Word2Vec e c ” ” 4
▪ emt a ▪ ( ) ▪ G ul
m emt er ksu a a u l m a emt ▪ emt M a S ▪ MUSE (Modularizing Unsupervised Sense Embeddings) ▪ api t api t a ▪ Contextual Word Similarity k e SoTA 5
▪ fa E u wn E g ue bd
▪ , B A A C A ▪ a g e bd G ▪ h mo ] V x ptk ▪ A , A C A C , ▪ ] V bdxMpt i pkLR D r ov cT W[ps 6
( ) ( ▪ 7
( ) ( ▪ 8 !
: "#,% : & ' (# : 1
( ) ( ▪ , ▪ 9
( ) ( ▪ ▪
10 Negative Sampling Margin
▪ 11
Subword
12 ▪
▪ RockBank
▪ SCWS-68 ▪ “... east bank of the Des
Moines River ...” ++ “... basis of all money laundering ...” +. bank + money . :*$'5. ()8 ▪ - bank + money 79)8. ",8 79)8'4.*/#97. //& ▪ -3'+!.1: -6()
15 ▪
16 ▪ $ Subwords+ ( %%' 0-.1 &)(%
▪ Abnormal Abnormality ! Subwords %"#+ ( *(
▪ a i rtx n e M sx ▪
e T T G ▪ F ea e e 17