Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 8月10日
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
gumigumi7
August 10, 2018
0
130
文献紹介 8月10日
Improving Distributional Similarity
with Lessons Learned from Word Embeddings
gumigumi7
August 10, 2018
Tweet
Share
More Decks by gumigumi7
See All by gumigumi7
文献紹介 1月24日
gumigumi7
0
250
文献紹介 11月7日
gumigumi7
0
140
文献紹介 10月3日
gumigumi7
0
330
文献紹介 9月3日
gumigumi7
0
270
文献紹介 7月16日
gumigumi7
0
260
文献紹介 6月12日
gumigumi7
0
330
文献紹介 5月16日
gumigumi7
0
190
文献紹介 4月18日
gumigumi7
0
150
文献紹介 12月15日
gumigumi7
0
120
Featured
See All Featured
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
The Curse of the Amulet
leimatthew05
1
8.7k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
GraphQLとの向き合い方2022年版
quramy
50
14k
Skip the Path - Find Your Career Trail
mkilby
0
60
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Building the Perfect Custom Keyboard
takai
2
690
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
58
50k
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Transcript
( Improving Distributional Similarity with Lessons Learned from Word Embeddings
▪ ▪ Omer Levy, Yoav Goldberg, Ido Dagan.
▪ Improving Distributional Similarity with Lessons Learned from Word Embeddings. ▪ Transactions of the Association for Computational Linguistics. 2015. ▪ ▪ , Skip-gram, LSA 2
▪ , pi ur nu p i S a
clulroug a S ▪ ) ▪ pi u tea , pi pi a a 3
▪ V ▪ 2 count predict ▪ Don’t count,
predict! (Baroni et al., 2014) ▪ Word2Vec Skip-gram Shifted-PMI ▪ Neural word embeddings as implicit matrix factorization (Levy and Goldberg, 2014) 4
▪ 2 ▪ hyperparameter ▪ Word2Vec 5
▪ ))( (- 2 ▪ )( D L AW
P ▪ 2 - - 2 ▪ - - 2 - 2 VI M W ▪ GW))( (- 2 V M P ▪ ▪ 6
▪ 2 ▪ C D 7 The quick brown
fox jumps over the lazy dog 4 4 3 4 2 4 1 4 4 4 3 4 2 4 1 4 Word2Vec : 1 1 1 2 1 3 1 4 1 1 1 2 1 3 1 4 Glove :
▪ ▪ '()&$,.-/+ ▪ #
# % # ▪ !"$) 8 ! = 1 − % & &: , %:
▪ ▪ R G MR ▪ - - S
▪ Shifted PMI ▪ - 2 PID ▪ −log(&) W S NV 9 ( ) *( + = -./ 0, 2 − log(&) 3--./ 0, 2 = max(-./ 0, 2 − log(&), 0)
▪ 7 0 7 577 2 ▪ 7 0.SW
0 0 5 SV I ca db S W M b e P ▪ V S ▪ α WD C 10
▪ ▪ 2 G SV SV D ▪ G
D AC 11
▪ ▪ E D ▪ E D C D
12
▪ ▪ ▪ 2 13
14
▪ ▪ PPMI-Matrix ▪ SVD ▪ SGNS (Word2Vec)
▪ Glove ▪ ▪ 6$-"!#% ▪ &,-" 2$-"!#% ▪ '*(-")$+ ▪ 672)$+
16 ▪ # "!# ▪ SVD
17 ▪ )%+ '*(-$ ▪ ▪
&,"-$# SGNS
▪ - Se N ▪ - - - n
y bc ▪ N smp n y i ▪ G tu d H uo a 18