Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making Scores with HiScore
Search
Hakka Labs
February 13, 2015
Programming
0
3.4k
Making Scores with HiScore
Video here:
Hakka Labs
February 13, 2015
Tweet
Share
More Decks by Hakka Labs
See All by Hakka Labs
New Workflows for Building Data Pipelines
hakka_labs
0
2.9k
Collaborative Topic Models for Users and Texts
hakka_labs
0
2.8k
Groupcache with Evan Owen
hakka_labs
2
5.4k
Testing Android at Spotify
hakka_labs
1
4.5k
It's Not a Bug, It's a Feature!
hakka_labs
0
3.2k
K-means Clustering to Understand Your Users
hakka_labs
0
2k
Building Amy: The Email-based Virtual Assistant by x.ai
hakka_labs
0
5k
Deep Learning and NLP Applications
hakka_labs
3
13k
Go and the Gophers
hakka_labs
2
11k
Other Decks in Programming
See All in Programming
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
130
TestingOsaka6_Ozono
o3
0
170
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
520
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
150
AIコーディングエージェント(Manus)
kondai24
0
210
認証・認可の基本を学ぼう後編
kouyuume
0
250
Cap'n Webについて
yusukebe
0
150
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
130
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
140
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
120
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
How to build a perfect <img>
jonoalderson
0
4.6k
My Coaching Mixtape
mlcsv
0
9
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Producing Creativity
orderedlist
PRO
348
40k
We Are The Robots
honzajavorek
0
120
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Mobile First: as difficult as doing things right
swwweet
225
10k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
1.9k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
190
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
130
Transcript
Making Scores with HiScore Abe Othman
None
None
None
None
HiScore is a python library for creating and maintaining scores
It uses a novel quasi-Kriging solution to a new methodology,
supervised scoring
What are scores?
Scores are a tool for domain experts to communicate their
expertise to a broad audience
88 51 27
} 58 Score Function Dimensions Score
There is no one correct scoring function
Scores are typically developed using the dual approach
1. Select a set of basis functions f(x ⃗) =
∑ γᵢφᵢ(x ⃗)
2. Adjust coefficients until things look right f(x ⃗) =
∑ γᵢφᵢ(x ⃗)
Dual scores ossify
Walkscore Problems Score of 100, but the highest crime in
SF
Supervised scoring: a primal approach
Experts start by labeling a reference set and the objects’
dimensions
Algorithm makes a scoring function that interpolates and obeys the
monotone relationship
Some nice features
Monotonicity is important for score acceptance and understanding
See a mis-scored point? Add it to the reference set
and re-run!
OK, but what algorithm?
Easy in one dimension
None
None
None
Hard in many dimensions
Failed approach: simplical interpolation
None
Failed approach: B-spline product bases
Supervised Scoring with Monotone Multidimensional Splines, AAAI 2014
Curse of dimensionality!
None
None
None
Failed approach: RBF with monotone row generation constraints
Failed approach: Neural Networks
None
None
Success: Beliakov
Reminder: Lipschitz Continuity |f(a)-f(b)| < C |a-b|
None
Monotone Lipschitz continuity
None
1. Project monotone Lipschitz cones from each point to generate
upper and lower bounds
2. Find the sup and inf constraints from the bounding
cones
3. Function value is halfway in-between the sup and inf
bounds
Beliakov example
Beliakov plateaux
Beliakov plateaux
How can we smooth and improve this?
Abandon Lipschitz, just project minimal cones from each point
None
`
HiScore solution
Using HiScore: Simplified Water Well Score
None
None
Two factors: Distance from nearest latrine and platform size
Label a reference set by taking high, middle and low
values in each dimension
Distance: 0m, 10m, 50m Size: 1SF, 25SF, 100SF
Score Distance Size 0 0 1 5 0 25 10
0 100 20 10 1 50 10 25 60 10 100 65 50 1 90 50 25 100 50 100 Monotone Relationship: (+, +)
import hiscore reference_set = {(0,1): 0, (0,25): 5, (0,100): 10,
(10,1): 20, (10,25): 50, … } mono_rel = [1,1] hiscore.create(reference_set, mono_rel, minval=0, maxval=100)
None
Complicate the model with additional factors
Avoid curse of dimensionality by building a tree
None
Possible to easily construct and understand scores with dozens of
input dimensions
Making dimensions monotone: blood pressure
None
S+ > 0 S- = 0 D+ > 0 D-
= 0 D+ = 0 D- > 0 S+ = 0 S- > 0
What do you want to score? github.com/aothman/ hiscore $ pip
install hiscore
Thanks!
[email protected]