Ling, J. Gao, E. Smith, J. Lehtinen, A. Jacobson, and S. Fidler. “Learning to predict 3D objects with an interpolation-based differentiable renderer.” NeurIPS 2019. - [Kato+ 2018] H. Kato, Y. Ushiku, and T. Harada. “Neural 3d mesh renderer.” CVPR 2018. - [Liu+ 2019] S. Liu, T. Li, W. Chen, and H. Li. “Soft rasterizer: A differentiable renderer for image-based 3D reasoning.” ICCV 2019. - [Loper & Black 2014] M. Loper, and M. Black. “OpenDR: An approximate differentiable renderer.” ECCV 2014. - [Murthy+ 2019] J. Murthy, E. Smith, J-F Lafleche,C. Tsang, A. Rozantsev, W. Chen, T. Xiang, R. Lebaredian, and S. Fidler. “Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research.” arXiv 2019. - [Ravi+ 2020] N. Ravi and J. Reizenstein and D. Novotny and T. Gordon and W-Y Lo, J. Johnson and G. Gkioxari. “PyTorch3D.” 2020. - [Valentin+ 2019] J. Valentin, C. Keskin, P. Pidlypenskyi, A. Makadia, A. Sud, and S. Bouaziz. “TensorFlow Graphics: Computer Graphics Meets Deep Learning.” 2019. References #96