Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
K Nearest Neighbourhood on GPU
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Ciel
July 24, 2014
Research
0
51
K Nearest Neighbourhood on GPU
K Nearest Neighbourhood using inverted list on GPU
Ciel
July 24, 2014
Tweet
Share
More Decks by Ciel
See All by Ciel
LLVM IR & Optimisation Techniques
imwithye
0
170
Other Decks in Research
See All in Research
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
20年前に50代だった人たちの今
hysmrk
0
140
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
620
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
260
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
320
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
170
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
530
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
63
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Done Done
chrislema
186
16k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
67
Discover your Explorer Soul
emna__ayadi
2
1.1k
Transcript
Genie-and- Lamp-GPU Yiwei Gong K Nearest Neighbourhood using inverted list
on GPU
K Nearest Neighbourhood Fundamental Operator in Data Mining Classification 0
5 10 15 20 0 3 6 9 12 Regression Collaborative Filtering You may like * Apple * Google * Amazon
SELECT SEX M AGE 18 SALARY 2900 Sex Age Salary
… M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … K Nearest Neighbourhood A running example
SELECT SEX M AGE 18 SALARY 2900 K Nearest Neighbourhood
Sex Age Salary … M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … A running example
DIM + VALUE SEX+M SEX+F AGE+18 AGE+19 … 2 0
3 1 2 Invert list: row_id SELECT SEX M AGE 18 SALARY 2900 3 How do we store the inverted list table on GPU?
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 0 0 3 0 0 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 1 1*0.5 3 1 1*0.5 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 1 1*0.5 2 1 1*0.5 3 1 1*0.5 4 1 1*0.5 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … SELECT SALARY 2900±1000 Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 1 0.5 4 1 0.5 … … … Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 2 1*0.3+0.5 4 1 0.5 … … … SELECT SALARY 2900±1000 Step 1: Matching & Aggregation
Block 1 Block 2 Block 2 SEX AGE SALARY GPU
Parallel Matching
Row ID Count AGG … … … 1 1 0.5
2 1 0.5 3 2 0.8 4 1 0.5 … … … K Selection What is the fast K Selection algorithm? Step 2: K Selection
R_id R_id R_id R_id R_id R_id R_id D+V1 D+V2 D+V3
invert_list_idx invert_list_table end_index First approach to store the inverted list table on GPU GPU
Host Device Map Main Memory ! KEY GPU Memory !
VALUE
dimension + value1 dimension + value2 Invert_list_idx Invert_list_table
None
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y MAP(KEY, INDEX) device_vector
Mapping C P U ! M E M O R
Y raw_pointer get(key) map(key, value) freeze() ratio()
Bucket Top K Selection Algorithm 2 4 1 5 2
1 K = 10 First 7 results Bucket_Num = (Value - MIN) / (MAX - MIN) * Number_Of_Buckets
Bucket Top K Selection Algorithm Accept Multi Queries K =
2 K = 5 K = 6 K = 3
#define NAME “YIWEI GONG” #define UNIVERSITY “NTU” #define EMAIL “
[email protected]
”
#define BLOG “http://ciel.im” #define ME “A stupid programmer” THANK YOU
Block 1 Block 2 Block 3 Block 4 Block 5
Block 6 GPU Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Block