Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
K Nearest Neighbourhood on GPU
Search
Ciel
July 24, 2014
Research
0
40
K Nearest Neighbourhood on GPU
K Nearest Neighbourhood using inverted list on GPU
Ciel
July 24, 2014
Tweet
Share
More Decks by Ciel
See All by Ciel
LLVM IR & Optimisation Techniques
imwithye
0
150
Other Decks in Research
See All in Research
数理最適化と機械学習の融合
mickey_kubo
15
8.8k
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
380
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
240
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
180
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
4
3.6k
Generative Models 2025
takahashihiroshi
21
12k
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
130
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.4k
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
480
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
970
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
250
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Optimizing for Happiness
mojombo
379
70k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
How GitHub (no longer) Works
holman
314
140k
Agile that works and the tools we love
rasmusluckow
329
21k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Why Our Code Smells
bkeepers
PRO
337
57k
Navigating Team Friction
lara
187
15k
The Language of Interfaces
destraynor
158
25k
Building an army of robots
kneath
306
45k
Transcript
Genie-and- Lamp-GPU Yiwei Gong K Nearest Neighbourhood using inverted list
on GPU
K Nearest Neighbourhood Fundamental Operator in Data Mining Classification 0
5 10 15 20 0 3 6 9 12 Regression Collaborative Filtering You may like * Apple * Google * Amazon
SELECT SEX M AGE 18 SALARY 2900 Sex Age Salary
… M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … K Nearest Neighbourhood A running example
SELECT SEX M AGE 18 SALARY 2900 K Nearest Neighbourhood
Sex Age Salary … M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … A running example
DIM + VALUE SEX+M SEX+F AGE+18 AGE+19 … 2 0
3 1 2 Invert list: row_id SELECT SEX M AGE 18 SALARY 2900 3 How do we store the inverted list table on GPU?
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 0 0 3 0 0 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 1 1*0.5 3 1 1*0.5 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 1 1*0.5 2 1 1*0.5 3 1 1*0.5 4 1 1*0.5 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … SELECT SALARY 2900±1000 Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 1 0.5 4 1 0.5 … … … Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 2 1*0.3+0.5 4 1 0.5 … … … SELECT SALARY 2900±1000 Step 1: Matching & Aggregation
Block 1 Block 2 Block 2 SEX AGE SALARY GPU
Parallel Matching
Row ID Count AGG … … … 1 1 0.5
2 1 0.5 3 2 0.8 4 1 0.5 … … … K Selection What is the fast K Selection algorithm? Step 2: K Selection
R_id R_id R_id R_id R_id R_id R_id D+V1 D+V2 D+V3
invert_list_idx invert_list_table end_index First approach to store the inverted list table on GPU GPU
Host Device Map Main Memory ! KEY GPU Memory !
VALUE
dimension + value1 dimension + value2 Invert_list_idx Invert_list_table
None
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y MAP(KEY, INDEX) device_vector
Mapping C P U ! M E M O R
Y raw_pointer get(key) map(key, value) freeze() ratio()
Bucket Top K Selection Algorithm 2 4 1 5 2
1 K = 10 First 7 results Bucket_Num = (Value - MIN) / (MAX - MIN) * Number_Of_Buckets
Bucket Top K Selection Algorithm Accept Multi Queries K =
2 K = 5 K = 6 K = 3
#define NAME “YIWEI GONG” #define UNIVERSITY “NTU” #define EMAIL “
[email protected]
”
#define BLOG “http://ciel.im” #define ME “A stupid programmer” THANK YOU
Block 1 Block 2 Block 3 Block 4 Block 5
Block 6 GPU Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Block