Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
K Nearest Neighbourhood on GPU
Search
Ciel
July 24, 2014
Research
0
39
K Nearest Neighbourhood on GPU
K Nearest Neighbourhood using inverted list on GPU
Ciel
July 24, 2014
Tweet
Share
More Decks by Ciel
See All by Ciel
LLVM IR & Optimisation Techniques
imwithye
0
150
Other Decks in Research
See All in Research
Weekly AI Agents News!
masatoto
26
34k
第79回 産総研人工知能セミナー 発表資料
agiats
2
170
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
260
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
180
129 2 th
0325
0
250
【NLPコロキウム】Stepwise Alignment for Constrained Language Model Policy Optimization (NeurIPS 2024)
akifumi_wachi
2
220
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
200
CUNY DHI_Lightning Talks_2024
digitalfellow
0
120
KDD論文読み会2024: False Positive in A/B Tests
ryotoitoi
0
240
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
3
1.3k
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
190
CoRL2024サーベイ
rpc
1
1.1k
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
Optimizing for Happiness
mojombo
376
70k
The Cost Of JavaScript in 2023
addyosmani
45
7k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Why Our Code Smells
bkeepers
PRO
335
57k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Scaling GitHub
holman
458
140k
How STYLIGHT went responsive
nonsquared
95
5.2k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
160
Agile that works and the tools we love
rasmusluckow
328
21k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Transcript
Genie-and- Lamp-GPU Yiwei Gong K Nearest Neighbourhood using inverted list
on GPU
K Nearest Neighbourhood Fundamental Operator in Data Mining Classification 0
5 10 15 20 0 3 6 9 12 Regression Collaborative Filtering You may like * Apple * Google * Amazon
SELECT SEX M AGE 18 SALARY 2900 Sex Age Salary
… M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … K Nearest Neighbourhood A running example
SELECT SEX M AGE 18 SALARY 2900 K Nearest Neighbourhood
Sex Age Salary … M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … A running example
DIM + VALUE SEX+M SEX+F AGE+18 AGE+19 … 2 0
3 1 2 Invert list: row_id SELECT SEX M AGE 18 SALARY 2900 3 How do we store the inverted list table on GPU?
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 0 0 3 0 0 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 1 1*0.5 3 1 1*0.5 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 1 1*0.5 2 1 1*0.5 3 1 1*0.5 4 1 1*0.5 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … SELECT SALARY 2900±1000 Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 1 0.5 4 1 0.5 … … … Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 2 1*0.3+0.5 4 1 0.5 … … … SELECT SALARY 2900±1000 Step 1: Matching & Aggregation
Block 1 Block 2 Block 2 SEX AGE SALARY GPU
Parallel Matching
Row ID Count AGG … … … 1 1 0.5
2 1 0.5 3 2 0.8 4 1 0.5 … … … K Selection What is the fast K Selection algorithm? Step 2: K Selection
R_id R_id R_id R_id R_id R_id R_id D+V1 D+V2 D+V3
invert_list_idx invert_list_table end_index First approach to store the inverted list table on GPU GPU
Host Device Map Main Memory ! KEY GPU Memory !
VALUE
dimension + value1 dimension + value2 Invert_list_idx Invert_list_table
None
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y MAP(KEY, INDEX) device_vector
Mapping C P U ! M E M O R
Y raw_pointer get(key) map(key, value) freeze() ratio()
Bucket Top K Selection Algorithm 2 4 1 5 2
1 K = 10 First 7 results Bucket_Num = (Value - MIN) / (MAX - MIN) * Number_Of_Buckets
Bucket Top K Selection Algorithm Accept Multi Queries K =
2 K = 5 K = 6 K = 3
#define NAME “YIWEI GONG” #define UNIVERSITY “NTU” #define EMAIL “
[email protected]
”
#define BLOG “http://ciel.im” #define ME “A stupid programmer” THANK YOU
Block 1 Block 2 Block 3 Block 4 Block 5
Block 6 GPU Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Block