Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
K Nearest Neighbourhood on GPU
Search
Ciel
July 24, 2014
Research
0
40
K Nearest Neighbourhood on GPU
K Nearest Neighbourhood using inverted list on GPU
Ciel
July 24, 2014
Tweet
Share
More Decks by Ciel
See All by Ciel
LLVM IR & Optimisation Techniques
imwithye
0
160
Other Decks in Research
See All in Research
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
140
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
4
350
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
3.8k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
960
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
200
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
160
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
750
Submeter-level land cover mapping of Japan
satai
3
420
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
350
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
8.7k
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
360
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Raft: Consensus for Rubyists
vanstee
140
7.1k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Visualization
eitanlees
149
16k
Fireside Chat
paigeccino
40
3.7k
YesSQL, Process and Tooling at Scale
rocio
173
14k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
115
20k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Transcript
Genie-and- Lamp-GPU Yiwei Gong K Nearest Neighbourhood using inverted list
on GPU
K Nearest Neighbourhood Fundamental Operator in Data Mining Classification 0
5 10 15 20 0 3 6 9 12 Regression Collaborative Filtering You may like * Apple * Google * Amazon
SELECT SEX M AGE 18 SALARY 2900 Sex Age Salary
… M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … K Nearest Neighbourhood A running example
SELECT SEX M AGE 18 SALARY 2900 K Nearest Neighbourhood
Sex Age Salary … M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … A running example
DIM + VALUE SEX+M SEX+F AGE+18 AGE+19 … 2 0
3 1 2 Invert list: row_id SELECT SEX M AGE 18 SALARY 2900 3 How do we store the inverted list table on GPU?
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 0 0 3 0 0 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 1 1*0.5 3 1 1*0.5 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 1 1*0.5 2 1 1*0.5 3 1 1*0.5 4 1 1*0.5 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … SELECT SALARY 2900±1000 Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 1 0.5 4 1 0.5 … … … Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 2 1*0.3+0.5 4 1 0.5 … … … SELECT SALARY 2900±1000 Step 1: Matching & Aggregation
Block 1 Block 2 Block 2 SEX AGE SALARY GPU
Parallel Matching
Row ID Count AGG … … … 1 1 0.5
2 1 0.5 3 2 0.8 4 1 0.5 … … … K Selection What is the fast K Selection algorithm? Step 2: K Selection
R_id R_id R_id R_id R_id R_id R_id D+V1 D+V2 D+V3
invert_list_idx invert_list_table end_index First approach to store the inverted list table on GPU GPU
Host Device Map Main Memory ! KEY GPU Memory !
VALUE
dimension + value1 dimension + value2 Invert_list_idx Invert_list_table
None
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y MAP(KEY, INDEX) device_vector
Mapping C P U ! M E M O R
Y raw_pointer get(key) map(key, value) freeze() ratio()
Bucket Top K Selection Algorithm 2 4 1 5 2
1 K = 10 First 7 results Bucket_Num = (Value - MIN) / (MAX - MIN) * Number_Of_Buckets
Bucket Top K Selection Algorithm Accept Multi Queries K =
2 K = 5 K = 6 K = 3
#define NAME “YIWEI GONG” #define UNIVERSITY “NTU” #define EMAIL “
[email protected]
”
#define BLOG “http://ciel.im” #define ME “A stupid programmer” THANK YOU
Block 1 Block 2 Block 3 Block 4 Block 5
Block 6 GPU Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Block