Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
K Nearest Neighbourhood on GPU
Search
Ciel
July 24, 2014
Research
0
43
K Nearest Neighbourhood on GPU
K Nearest Neighbourhood using inverted list on GPU
Ciel
July 24, 2014
Tweet
Share
More Decks by Ciel
See All by Ciel
LLVM IR & Optimisation Techniques
imwithye
0
170
Other Decks in Research
See All in Research
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
3
950
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
120
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
140
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
110
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
100
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
350
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
380
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
330
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
CoRL2025速報
rpc
3
3.7k
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Unsuck your backbone
ammeep
671
58k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
260
The World Runs on Bad Software
bkeepers
PRO
72
12k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
120
Making Projects Easy
brettharned
120
6.5k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
130
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
51
45k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
88
How GitHub (no longer) Works
holman
316
140k
Transcript
Genie-and- Lamp-GPU Yiwei Gong K Nearest Neighbourhood using inverted list
on GPU
K Nearest Neighbourhood Fundamental Operator in Data Mining Classification 0
5 10 15 20 0 3 6 9 12 Regression Collaborative Filtering You may like * Apple * Google * Amazon
SELECT SEX M AGE 18 SALARY 2900 Sex Age Salary
… M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … K Nearest Neighbourhood A running example
SELECT SEX M AGE 18 SALARY 2900 K Nearest Neighbourhood
Sex Age Salary … M 20 3000 … F 17 3600 … M 18 4000 … F 19 2900 … A running example
DIM + VALUE SEX+M SEX+F AGE+18 AGE+19 … 2 0
3 1 2 Invert list: row_id SELECT SEX M AGE 18 SALARY 2900 3 How do we store the inverted list table on GPU?
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 0 0 3 0 0 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 0 0 2 1 1*0.5 3 1 1*0.5 4 0 0 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … AGE+17 1 AGE+18
2, 3 AGE+19 4 AGE+20 9, 10 AGE+21 11 … … Row ID Count AGG … … … 1 1 1*0.5 2 1 1*0.5 3 1 1*0.5 4 1 1*0.5 … … … SELECT AGE 18±1 Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … SELECT SALARY 2900±1000 Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 1 0.5 4 1 0.5 … … … Step 1: Matching & Aggregation
DIM + VALUE Inverted List … … SALARY+2500 NULL SALARY+3000
0, 3 SALARY+3500 1 SALARY+4000 2 SALARY+4500 4,5 … … Row ID Count AGG … … … 1 1 0.5 2 1 0.5 3 2 1*0.3+0.5 4 1 0.5 … … … SELECT SALARY 2900±1000 Step 1: Matching & Aggregation
Block 1 Block 2 Block 2 SEX AGE SALARY GPU
Parallel Matching
Row ID Count AGG … … … 1 1 0.5
2 1 0.5 3 2 0.8 4 1 0.5 … … … K Selection What is the fast K Selection algorithm? Step 2: K Selection
R_id R_id R_id R_id R_id R_id R_id D+V1 D+V2 D+V3
invert_list_idx invert_list_table end_index First approach to store the inverted list table on GPU GPU
Host Device Map Main Memory ! KEY GPU Memory !
VALUE
dimension + value1 dimension + value2 Invert_list_idx Invert_list_table
None
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y
Mapping C P U ! M E M O R
Y MAP(KEY, INDEX) device_vector
Mapping C P U ! M E M O R
Y raw_pointer get(key) map(key, value) freeze() ratio()
Bucket Top K Selection Algorithm 2 4 1 5 2
1 K = 10 First 7 results Bucket_Num = (Value - MIN) / (MAX - MIN) * Number_Of_Buckets
Bucket Top K Selection Algorithm Accept Multi Queries K =
2 K = 5 K = 6 K = 3
#define NAME “YIWEI GONG” #define UNIVERSITY “NTU” #define EMAIL “
[email protected]
”
#define BLOG “http://ciel.im” #define ME “A stupid programmer” THANK YOU
Block 1 Block 2 Block 3 Block 4 Block 5
Block 6 GPU Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Block