Save 37% off PRO during our Black Friday Sale! »

Fundamentos da Visualização de Dados

Fundamentos da Visualização de Dados

Autores: Edgar Cutar e Italo Cegatta

43aec61f9ef926b809d6f16e1f2c97bf?s=128

Italo Cegatta

June 01, 2020
Tweet

Transcript

  1. e por que você deveria evitar gráficos com nome de

    comida Junho de 2020 Fundamentos da Visualização de Dados
  2. O QUE VOCÊ VAI ENCONTRAR AQUI Transformação Digital Suzano |

    Alcance o impensável #DATAVIZ Essa apresentação é uma introdução à ciência e à arte da visualização de dados, que irá contar com... • Menos é mais, minimalismo na comunicação • Não use gráficos de pizza • Monoaxialismo, ou o pecado do eixo duplo • Uso consciente de cores e paletas • Tipos de gráficos mais comuns • E mais...
  3. Quem somos nós Transformação Digital Suzano | Alcance o impensável

    Edgar Cientista de Dados Digital Ítalo Pesquisador Tecnologia Florestal
  4. Visualização de dados é parte arte, parte ciência Transformação Digital

    Suzano | Alcance o impensável Arte + Ciência • O desafio de comunicar informações através de gráficos é comum ao dia a dia na maior parte das empresas. • O maior desafio é passar informação de maneira clara e sem distorções para seu público-alvo Entender o contexto Escolher um visual efetivo Eliminar ruídos Focar atenção Contar uma história
  5. Transformação Digital Suzano | Alcance o impensável Menos é mais:

    O foco na mensagem
  6. Fonte: Storytelling with Data (disponível em http://www.storytellingwithdata.com/) Menos é mais

    No nosso dia a dia, é comum encontrar gráficos como esse Numa primeira olhada, não parece ter nenhum problema. Você consegue apontar quais os problemas desse gráfico?
  7. Fonte: Storytelling with Data (disponível em http://www.storytellingwithdata.com/) No nosso dia

    a dia, é comum encontrar gráficos como esse Algumas questões: - Redundância no eixo y (rótulo + grid) - O que significam as cores? - Que mensagem estou tentando passar? Menos é mais
  8. Vejam as mesmas informações com outra roupagem Algumas mudanças positivas:

    - O título explica qual o objetivo daquela visualização; - Linhas ao invés de barras destacam o crescimento da diferença entre tickets processados e recebidos; - Está destacada a informação da demissão de dois colaboradores em maio como causa do problema. - Ninguém precisa apresentar esse gráfico Fonte: Storytelling with Data (disponível em http://www.storytellingwithdata.com/) Menos é mais
  9. Outro exemplo que pode ser melhorado Vamos exercitar: • O

    que você mudaria nesse gráfico? • O que está faltando? • Qual a mensagem dessa visualização? Fonte: Storytelling with Data (disponível em http://www.storytellingwithdata.com/) Menos é mais
  10. Nossa sugestão de melhoria destaca o sucesso do piloto Fonte:

    Storytelling with Data (disponível em http://www.storytellingwithdata.com/) Menos é mais Agora sabemos do que se trata esse gráfico, foram pesquisas realizadas antes e depois de um programa piloto de estímulo à ciência. As cores foram usadas pra enfatizar os resultados positivos. Textos de apoio são essenciais para passar uma mensagem coesa.
  11. Como passar uma boa mensagem? Transformação Digital Suzano | Alcance

    o impensável Uma boa visualização deve ter como companhia uma boa história. Não esqueça que seu gráfico deve ter uma razão pra existir Cada elemento deve ter uma razão de existir. Legendas, cores, título. Use com sabedoria. Quem é a audiência? Menos é mais Saiba sua mensagem ALGUNS GUIAS: Muito cuidado com exageros. Redundância, excesso de cores e excesso de informações são um tiro no pé da boa comunicação Provavelmente o nível de detalhe para um executivo e para um time técnico vai ser diferente. Adapte seu conteúdo à sua plateia Sua visualização tem que ter uma razão de existir. Saiba qual a exata mensagem de cada gráfico que você colocar. Se não tem mensagem, talvez ela não deva existir
  12. Transformação Digital Suzano | Alcance o impensável Não use gráficos

    de pizza
  13. Humanos são naturalmente ruins em interpretar áreas Olhe o gráfico

    ao lado. Tente ordenar as partes por tamanho. Interpretando áreas Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em https://serialmentor.com/dataviz)
  14. Não está convencido? Compare agora os três gráficos abaixo. Tente

    entender a evolução dos valores entre os três. Comparando gráficos Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em https://serialmentor.com/dataviz)
  15. E se trocar por um gráfico de barras? Compare agora

    os três gráficos abaixo. Mais fácil, né. Comparando gráficos Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em https://serialmentor.com/dataviz)
  16. Transformação Digital Suzano | Alcance o impensável Alternativas à pizza

  17. Transformação Digital Suzano | Alcance o impensável 54% 19% 9%

    9% 9% Quick Win Moonshot EY Nice to Have Park it Vamos começar com um exemplo: Alternativas à pizza Além das áreas, o que você enxerga como problemas aqui nesse gráfico?
  18. Um gráfico de barras permite comparação direta de alturas e

    eliminação do excesso de cores Transformação Digital Suzano | Alcance o impensável 54% 19% 9% 9% 9% 0% 10% 20% 30% 40% 50% 60% Quick Win Moonshot EY Nice to Have Park it Alternativas à pizza
  19. Rótulos de dados e linhas de fundo são redundantes. É

    possível escolher um só Transformação Digital Suzano | Alcance o impensável 54% 19% 9% 9% 9% Quick Win Moonshot EY Nice to Have Park it 0% 10% 20% 30% 40% 50% 60% Quick Win Moonshot EY Nice to Have Park it Alternativas à pizza
  20. É possível usar cores para destacar o dado mais importante

    (se houver) Transformação Digital Suzano | Alcance o impensável 19% 0% 10% 20% 30% 40% 50% 60% Quick Win Moonshot EY Nice to Have Park it Alternativas à pizza
  21. Gráficos em barra não servem sempre Gráfico de barras não

    permite enxergar os dados como partes de um todo Transformação Digital Suzano | Alcance o impensável Alternativas à pizza 54% 19% 9% 9% 9% Quick Win Moonshot EY Nice to Have Park it
  22. Gráficos em barra não servem sempre Outra opção é um

    gráfico de barras empilhadas Transformação Digital Suzano | Alcance o impensável Alternativas à pizza Quick Win Moonshot 19% EY Nice to Have Park it 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
  23. Gráficos em barra não servem sempre Para enxergar proporções, outra

    alternativa é o treemap Transformação Digital Suzano | Alcance o impensável Alternativas à pizza
  24. Transformação Digital Suzano | Alcance o impensável Exemplos bons (dá

    pra usar pizza – com moderação)
  25. Começando com um exemplo ruim Outros Exemplos

  26. Outros Exemplos Duas partes significativas • Cores usadas de maneira

    adequada • Texto de apoio
  27. Outros Exemplos Divisão de cadeiras do parlamento alemão (1961-63) •

    Mostra a coalizão SPD+FDP como sendo maioria • Foco em partes de um todo com análise simples • Uso de cores remete à bandeira alemã
  28. Outros Exemplos Propósitos cômicos

  29. Transformação Digital Suzano | Alcance o impensável O pecado do

    eixo duplo
  30. Eixo Duplo Utilizar um segundo eixo parece útil, mas é

    igualmente traiçoeiro • Alterando as escalas, a conclusão muda drasticamente Fonte: Why not to use two axes, and what to use instead– Lisa Charlotte (disponível em https://blog.datawrapper.de/dualaxis/)
  31. Eixo Duplo Utilizar um segundo eixo parece útil, mas é

    igualmente traiçoeiro • Alterando as escalas, a conclusão muda drasticamente • Induz a uma correlação... provavelmente inexistente Fonte: Why not to use two axes, and what to use instead– Lisa Charlotte (disponível em https://blog.datawrapper.de/dualaxis/)
  32. Eixo Duplo Utilizar um segundo eixo parece útil, mas é

    igualmente traiçoeiro • Alterando as escalas, a conclusão muda drasticamente • Induz a uma correlação... provavelmente inexistente • Eixos de diferentes magnitudes vão confundir o leitor Fonte: Why not to use two axes, and what to use instead– Lisa Charlotte (disponível em https://blog.datawrapper.de/dualaxis/)
  33. Mudando a escala e amplitude dos eixos a interpretação muda

    completamente! Laranja se manteve estável, Azul aumentou bastante Laranja aumentou, Azul se manteve Ambos partiram do mesmo nível, mas Laranja aumentou muito mais que Azul Ambos partiram do mesmo nível, mas Azul aumentou muito mais que Laranja Ambos cresceram, mas Azul teve resultado maior que Laranja Ambos se mantiveram estáveis Fonte: Why not to use two axes, and what to use instead– Lisa Charlotte (disponível em https://blog.datawrapper.de/dualaxis/) Eixo Duplo
  34. Conclusão: “(...) nossos resultados desencorajam o uso do gráfico com

    eixo duplo, pois os participantes tiveram um desempenho pior com esse gráfico e também o classificaram como o mais baixo em termos de preferência subjetiva.” Fonte: A Study on Dual-Scale Data Charts – Isenberg et al., 2011. (disponível em https://hal.inria.fr/inria-00638535) Pesquisas mostram que usar eixo duplo piora a interpretabilidade Eixo Duplo
  35. Para evitar o eixo duplo, podemos: Separar em dois gráficos

    e deixar claro a magnitude de cada caso Fonte: Why not to use two axes, and what to use instead– Lisa Charlotte (disponível em https://blog.datawrapper.de/dualaxis/) Eixo Duplo
  36. Para evitar o eixo duplo, podemos: Indexar os valores e

    mostrar a mudança relativa, ignorando os valores absolutos Fonte: Why not to use two axes, and what to use instead– Lisa Charlotte (disponível em https://blog.datawrapper.de/dualaxis/) Eixo Duplo
  37. Para evitar o eixo duplo, podemos: Mostrar a série principal

    e apenas destacar comentários relacionados à segunda série Fonte: Why not to use two axes, and what to use instead– Lisa Charlotte (disponível em https://blog.datawrapper.de/dualaxis/) Eixo Duplo
  38. Transformação Digital Suzano | Alcance o impensável Uso consciente de

    cores e paletas
  39. Cores Bom gosto e empatia acima de tudo

  40. Cores Vamos conceitualizar os ‘tipos’ de cores/paletas e a ‘finalidade’

    do uso Tipos: • Sequencial • Divergente • Qualitativa Finalidade: • Distinguir • Representar • Destacar
  41. Cores Qual a natureza dos seus dados? Fonte: COLOR BREWER

    2.0 - Brewer et al. (disponível em https://colorbrewer2.org/) Paletas Sequenciais • Dados ordenados que progridem de baixo para alto • Apenas um dos extremos merece destaque • Usar em casos: ‘quanto maior o valor, melhor’
  42. Cores Qual a natureza dos seus dados? Fonte: COLOR BREWER

    2.0 - Brewer et al. (disponível em https://colorbrewer2.org/) Paletas Divergentes • Os dois extremos merecem destaque, com a mesma ênfase • Usar em casos: ‘ruim vs bom’
  43. Cores Qual a natureza dos seus dados? Fonte: COLOR BREWER

    2.0 - Brewer et al. (disponível em https://colorbrewer2.org/) Paletas Qualitativas • Não induz ordem nem grandeza • Distinção de atributos • Usar em casos: ‘n diferentes grupos’
  44. Cores Qual a finalidade do gráfico? Fonte: Fundamentals of Data

    Visualization – Claus Wilke (Adaptado de https://serialmentor.com/dataviz) Distinguir grupos • Usar paletas qualitativas • Cuidado com a quantidade, chega uma hora que não dá pra distinguir entre um grupo do outro • Os grupos podem ter cores temáticas
  45. Cores Qual a finalidade do gráfico? Fonte: Fundamentals of Data

    Visualization – Claus Wilke (Adaptado de https://serialmentor.com/dataviz) Representar valores • Usar paletas sequenciais e divergentes • Escolher a tonalidade de acordo com a intenção do gráfico (ex. azul = bom, vermelho = ruim) • Cuidado com valores discrepantes • A legenda pode ser contínua ou em classes
  46. Cores Qual a finalidade do gráfico? Fonte: Fundamentals of Data

    Visualization – Claus Wilke (Adaptado de https://serialmentor.com/dataviz) Ferramenta para destacar • Usar paletas qualitativas sobre cores neutras • Usar cor destaque sobre transparência ou cores neutras • Cuidado para não abusar do destaque
  47. Cores Dicas para guardar no coração • Avalie se é

    melhor colocar o foco na escala de cor ou num dos eixos • Se houver muitos grupos, evite a legenda de cor Fonte: What to consider when choosing colors for data visualization – Lisa Charlotte (disponível em https://blog.datawrapper.de/colors/)
  48. Cores Dicas para guardar no coração • Mantenha a consistência

    na escolha das cores para as variáveis e grupos • Menos é mais, lembra? Destaque o que é importante e faça outro gráfico para mostrar o contexto geral, se necessário Fonte: What to consider when choosing colors for data visualization – Lisa Charlotte (disponível em https://blog.datawrapper.de/colors/)
  49. Cores Dicas para guardar no coração • Cores intuitivas ajudam

    na interpretação e associação • Não use paletas com gradiente para representar grupos Fonte: What to consider when choosing colors for data visualization – Lisa Charlotte (disponível em https://blog.datawrapper.de/colors/)
  50. Cores Lembre-se que o coleguinha pode ser daltônico Fonte: How

    to Use Color Blind Friendly Palettes to Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) 8% dos homens e 0,5% das mulheres são daltônicos
  51. Cores Daltonismo se apresenta em diversas formas Fonte: How to

    Use Color Blind Friendly Palettes to Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/)
  52. Cores Dê preferência por paletas colorblind safe! Fonte: How to

    Use Color Blind Friendly Palettes to Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) Evite estas combinações de cores Vermelho & verde Verde & marrom Verde & azul Azul & cinza Azul & roxo Verde & cinza Verde & preto
  53. Cores Fonte: How to Use Color Blind Friendly Palettes to

    Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) Dê preferência por paletas colorblind safe!
  54. Cores Fonte: How to Use Color Blind Friendly Palettes to

    Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) Dê preferência por paletas colorblind safe!
  55. Cores Fonte: How to Use Color Blind Friendly Palettes to

    Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) Um exemplo de paleta segura é a “viridis”
  56. Cores Fonte: How to Use Color Blind Friendly Palettes to

    Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) Um exemplo de paleta segura é a “viridis” Deuteranopia
  57. Cores Fonte: How to Use Color Blind Friendly Palettes to

    Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) Um exemplo de paleta segura é a “viridis” Deuteranopia Red Blind - Protanopia
  58. Cores Fonte: How to Use Color Blind Friendly Palettes to

    Make Your Charts Accessible – Rachel Cravit (disponível em https://venngage.com/blog/color-blind- friendly-palette/) Um exemplo de paleta segura é a “viridis” Deuteranopia Red Blind - Protanopia Blue Blind - Tritanopia
  59. Transformação Digital Suzano | Alcance o impensável Tipos mais comuns

    de gráficos (e onde usá-los)
  60. CADA GRÁFICO EM SEU LUGAR Transformação Digital Suzano | Alcance

    o impensável Tipos de gráficos Cada gráfico tem seus pontos fortes e fracos, saiba usá-los a seu favor Existem grandes grupos de visualizações, saber o que você quer comunicar é o mais importante: Alguns tipos de visualizações são: - Quantidades - Distribuições - Proporções - Relações x-y - Dados geoespaciais - Incerteza
  61. Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em

    https://serialmentor.com/dataviz) Tipos de gráficos Visualizando quantidades Barras são a maneira mais comum de representar quantidades. A esquerda estão as maneiras mais comuns de representar quando existe uma classe. Abaixo são as maneiras de representar mais de uma classe de quantidades.
  62. Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em

    https://serialmentor.com/dataviz) Visualizando Distribuições Histogramas e gráficos de densidade são a maneira mais intuitiva de visualizar distribuições, mas ambas possuem parâmetros que podem ser enganosos. Abaixo são maneiras de visualizar várias classes: boxplots e suas variações (violinos, sina plots) são bastante úteis pra visualizar diferenças gerais entre as distribuições. Tipos de gráficos
  63. Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em

    https://serialmentor.com/dataviz) Visualizando Proporções Por favor, não use gráficos de pizza (acho que você já entendeu). Gráficos de pizza e barras empilhadas enfatizam partes de um todo enquanto barras facilitam a comparação entre partes individuais. Quando proporções são dadas de acordo com múltiplos agrupamentos surgem o gráfico de mosaico, o treemap e os conjuntos paralelos. Tipos de gráficos
  64. Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em

    https://serialmentor.com/dataviz) Visualizando Relações x-y Ao lado, diversas maneiras de mostrar relações entre duas variáveis. A mais conhecida e usada é o gráfico de dispersão (scatterplot) mas, além dele, existem diversas opções, aplicáveis conforme muda a quantidade de dados apresentada e a relação que se deseja enfatizar. Tipos de gráficos
  65. Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em

    https://serialmentor.com/dataviz) Visualizando Dados Espaciais Existem maneiras de destacar dados espaciais que vão além do simples mapa. Ao destacar com cores temos o choropleth, ao distorcer áreas ou simplifica-las em um quadrado temos o cartograma. Tipos de gráficos
  66. Fonte: Fundamentals of Data Visualization – Claus Wilke (disponível em

    https://serialmentor.com/dataviz) Visualizando a incerteza Tipos de gráficos Barras de erro indicam a variação esperada de alguma estimativa ou medição. Para visualizações mais focadas na incerteza, temos as opções da segunda linha, onde conseguimos ver a distribuição das probabilidades. Para gráficos de linha, o equivalente à barra de erro é a “banda de confiança”.
  67. Fonte: From Data to Viz (disponível em https://www.data-to-viz.com/) Interpretando áreas

    Em caso de dúvida, um site agrupa as diversas opções O site From Data to Viz (data-to- viz.com) te ajuda a explorar as principais opções de visualizações de acordo com os dados disponíveis. É ótimo pra ter novas ideias de como apresentar seus dados (com tutoriais em R, Python e Flourish)
  68. Fonte: Flourish Examples (disponível em https://flourish.studio/examples/) Interpretando áreas Quase todos

    os gráficos podem ser feitos no Excel, mas existem mais opções Se você programa, R e Python possuem bibliotecas extremamente robustas para gerar todo tipo de gráfico, como ggplot2 e seaborn. Pra quem não escreve em nenhuma linguagem, o PowerBI é boa opção. Além dele, é possível usar o Flourish, uma ferramenta online gratuita pra geração de belos gráficos.
  69. Transformação Digital Suzano | Alcance o impensável Bônus: show de

    horrores
  70. Horror :C O combo mais vendido Quick Win 54% Moonshot

    19% EY 9% Nice to Have 9% Park it 9% Quick Win 54% Moonshot 19% EY 9% Nice to Have 9% Park it 9% Quick Win 54% Moonsh ot 19% EY 9% Nice to Have 9% Park it 9% Quick Win 54% Moonsh ot 29% EY 19% Nice to Have 9% Park it 9% Pizza + Fatiado + 3D + Soma > 100%
  71. Gráfico de donut versão furada do gráfico de pizza Transformação

    Digital Suzano | Alcance o impensável Pior • Diferente da pizza, não é feito em área, mas em segmento de arco (não que ajude)
  72. Transformação Digital Suzano | Alcance o impensável Outros Exemplos Gráfico

    de spaghetti Completando a tríade alimentícia
  73. Especial America Cativando a audiência

  74. Triste Gráfico de furacão Deus do céu

  75. Visualização de dados é ciência! Transformação Digital Suzano | Alcance

    o impensável #REFERÊNCIAS & LINKS ÚTEIS que vale muito a pena você conferir! From Data to Viz – website: https://www.data-to-viz.com/ Fundamentals of Data Visualization – Livro: https://serialmentor.com/dataviz Storytelling with Data – Livro e Blog: http://www.storytellingwithdata.com/ The worst chart in the world – Business Insider: https://bit.ly/3bqaNMA Color Brewer 2.0 - website: https://colorbrewer2.org/ Datawraper - Blog: https://blog.datawrapper/ Venngage - Blog: https://venngage.com/blog/
  76. OBRIGADO! #umaempresaparatransformar digital@suzano.com.br

  77. Transformação Digital Suzano | Alcance o impensável Pra reforçar: Por

    favor, não faça gráficos 3D