Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kaito Minatoya
December 23, 2025
Programming
0
410
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
Kaito Minatoya
December 23, 2025
Tweet
Share
More Decks by Kaito Minatoya
See All by Kaito Minatoya
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
2.4k
組織と文化から設計するエンジニア採用ストラテジー
kamina_zzz
0
1.1k
Other Decks in Programming
See All in Programming
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
620
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
200
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
4k
Data-Centric Kaggle
isax1015
2
780
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
150
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
470
組織で育むオブザーバビリティ
ryota_hnk
0
180
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
6
690
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
480
Featured
See All Featured
A designer walks into a library…
pauljervisheath
210
24k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
80
Designing for Performance
lara
610
70k
Fireside Chat
paigeccino
41
3.8k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
What's in a price? How to price your products and services
michaelherold
247
13k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
57
Git: the NoSQL Database
bkeepers
PRO
432
66k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
440
Balancing Empowerment & Direction
lara
5
900
ラッコキーワード サービス紹介資料
rakko
1
2.3M
Transcript
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜 2025 / 12 / 23 Ubie株式会社 Software
Engineer / Tech Lead 湊谷 海斗
2 @me 2 Minatoya Kaito 湊谷 海斗 @kamina_zzz Ubie, inc.
Software Engineer / Tech Lead Music 🎸, Camera 📷, Fishing 🎣, Poker ♠, Game 🎮, Drinking 🍻, Camping ⛺
3 3 Ubie について
4 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
5 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249 やることが ……多い!
6 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249 全部 AI に丸投げしたい!
7 怠惰の極地 目指したところ: 「全部AI Agentにやらせて、自分は『デプロイしてヨシ!』って言うだけの係になりたい」 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
8 目指す体験 1. 企画: 私が「こういう機能があったら良さそう」とチャットにふわっと投げる。 2. PBI化: AIがそれを拾い、仕様に落とし込んでPBIを作成する。 3. 実装:
AI Agentがコードを書き、PRを作成する。 4. 検証: PR作成と同時にPreview環境へデプロイ。AIがオンデマンドのE2Eテストコードを書いて実行す る。 5. 承認: ここで初めて人間が登場。「いいじゃん」と承認ボタンを押す。 6. 分析: デプロイ後、AIがログやメトリクスを監視。「数値が悪化したのでロールバックしました」や「A/Bテス トでB案が勝ったので本採用します」といった判断まで行う。 7. 次の企画: 分析から得た示唆や他の情報から「次に行うべき修正の企画出し」が提示される。
9 目指す体験 1. 企画: 私が「こういう機能があったら良さそう」とチャットにふわっと投げる。 2. PBI化: AIがそれを拾い、仕様に落とし込んでPBIを作成する。 3. 実装:
AI Agentがコードを書き、PRを作成する。 4. 検証: PR作成と同時にPreview環境へデプロイ。AIがオンデマンドのE2Eテストコードを書いて実行す る。 5. 承認: ここで初めて人間が登場。「いいじゃん」と承認ボタンを押す。 6. 分析: デプロイ後、AIがログやメトリクスを監視。「数値が悪化したのでロールバックしました」や「A/Bテス トでB案が勝ったので本採用します」といった判断まで行う。 7. 次の企画: 分析から得た示唆や他の情報から「次に行うべき修正の企画出し」が提示される。 既にできているところもある
10 現在地: やりたいこと →デプロイまで
11 現在地: やりたいこと →デプロイまで
12 現在地: やりたいこと →デプロイまで
13 現在地: やりたいこと →デプロイまで
14 現在地: やりたいこと →デプロイまで
15 現在地: やりたいこと →デプロイまで
16 怠惰の極地 目指したところ: 「全部AI Agentにやらせて、自分は『デプロイしてヨシ!』って言うだけの係になりたい」 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
17 技術スタック ・Slack, JIRA, GitHub, Claude Code ・Ubie では体感として Claude
Code が良さそう ・claude-code-base-action をもとに自作した GitHub actions で Claude Code を動かしている ・理論上 local の Claude Code と同じ性能が得られる
18 Why チケット駆動? ・チケット=「AIへの構造化されたプロンプト」 ・トレーサビリティ ・最初から AI が 100% 完璧に仕事を完遂はできない
・書き換えながら中間表現として共有メモリとして機能する ・Engineer以外も含む人間でも AI でも修正しやすい ・ステータス管理 ・メトリクス確認中→十分なサンプルサイズが集まってから分析する必要
19 今後の展望 ・merge & deploy の自動化 ・分析からレポーティング、次の企画へと完全自動化 ・エラーやシステムメトリクスの監視、自動復旧 ・より大きな機能開発、リファクタリング、リアーキテクチャなどなど
20 ご静聴ありがとうございました! We Are Hiring! 💪 https://recruit.ubie.life/