Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
Search
Kaito Minatoya
December 23, 2025
Programming
0
410
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
Kaito Minatoya
December 23, 2025
Tweet
Share
More Decks by Kaito Minatoya
See All by Kaito Minatoya
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
2.4k
組織と文化から設計するエンジニア採用ストラテジー
kamina_zzz
0
1.1k
Other Decks in Programming
See All in Programming
今から始めるClaude Code超入門
448jp
8
9.1k
AI時代の認知負荷との向き合い方
optfit
0
170
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
2026年 エンジニアリング自己学習法
yumechi
0
140
並行開発のためのコードレビュー
miyukiw
1
1.3k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
750
CSC307 Lecture 08
javiergs
PRO
0
670
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
Raku Raku Notion 20260128
hareyakayuruyaka
0
370
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
150
高速開発のためのコード整理術
sutetotanuki
1
410
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1.1k
Featured
See All Featured
Side Projects
sachag
455
43k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
Believing is Seeing
oripsolob
1
60
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
Documentation Writing (for coders)
carmenintech
77
5.3k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
The SEO Collaboration Effect
kristinabergwall1
0
360
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Transcript
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜 2025 / 12 / 23 Ubie株式会社 Software
Engineer / Tech Lead 湊谷 海斗
2 @me 2 Minatoya Kaito 湊谷 海斗 @kamina_zzz Ubie, inc.
Software Engineer / Tech Lead Music 🎸, Camera 📷, Fishing 🎣, Poker ♠, Game 🎮, Drinking 🍻, Camping ⛺
3 3 Ubie について
4 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
5 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249 やることが ……多い!
6 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249 全部 AI に丸投げしたい!
7 怠惰の極地 目指したところ: 「全部AI Agentにやらせて、自分は『デプロイしてヨシ!』って言うだけの係になりたい」 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
8 目指す体験 1. 企画: 私が「こういう機能があったら良さそう」とチャットにふわっと投げる。 2. PBI化: AIがそれを拾い、仕様に落とし込んでPBIを作成する。 3. 実装:
AI Agentがコードを書き、PRを作成する。 4. 検証: PR作成と同時にPreview環境へデプロイ。AIがオンデマンドのE2Eテストコードを書いて実行す る。 5. 承認: ここで初めて人間が登場。「いいじゃん」と承認ボタンを押す。 6. 分析: デプロイ後、AIがログやメトリクスを監視。「数値が悪化したのでロールバックしました」や「A/Bテス トでB案が勝ったので本採用します」といった判断まで行う。 7. 次の企画: 分析から得た示唆や他の情報から「次に行うべき修正の企画出し」が提示される。
9 目指す体験 1. 企画: 私が「こういう機能があったら良さそう」とチャットにふわっと投げる。 2. PBI化: AIがそれを拾い、仕様に落とし込んでPBIを作成する。 3. 実装:
AI Agentがコードを書き、PRを作成する。 4. 検証: PR作成と同時にPreview環境へデプロイ。AIがオンデマンドのE2Eテストコードを書いて実行す る。 5. 承認: ここで初めて人間が登場。「いいじゃん」と承認ボタンを押す。 6. 分析: デプロイ後、AIがログやメトリクスを監視。「数値が悪化したのでロールバックしました」や「A/Bテス トでB案が勝ったので本採用します」といった判断まで行う。 7. 次の企画: 分析から得た示唆や他の情報から「次に行うべき修正の企画出し」が提示される。 既にできているところもある
10 現在地: やりたいこと →デプロイまで
11 現在地: やりたいこと →デプロイまで
12 現在地: やりたいこと →デプロイまで
13 現在地: やりたいこと →デプロイまで
14 現在地: やりたいこと →デプロイまで
15 現在地: やりたいこと →デプロイまで
16 怠惰の極地 目指したところ: 「全部AI Agentにやらせて、自分は『デプロイしてヨシ!』って言うだけの係になりたい」 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
17 技術スタック ・Slack, JIRA, GitHub, Claude Code ・Ubie では体感として Claude
Code が良さそう ・claude-code-base-action をもとに自作した GitHub actions で Claude Code を動かしている ・理論上 local の Claude Code と同じ性能が得られる
18 Why チケット駆動? ・チケット=「AIへの構造化されたプロンプト」 ・トレーサビリティ ・最初から AI が 100% 完璧に仕事を完遂はできない
・書き換えながら中間表現として共有メモリとして機能する ・Engineer以外も含む人間でも AI でも修正しやすい ・ステータス管理 ・メトリクス確認中→十分なサンプルサイズが集まってから分析する必要
19 今後の展望 ・merge & deploy の自動化 ・分析からレポーティング、次の企画へと完全自動化 ・エラーやシステムメトリクスの監視、自動復旧 ・より大きな機能開発、リファクタリング、リアーキテクチャなどなど
20 ご静聴ありがとうございました! We Are Hiring! 💪 https://recruit.ubie.life/