Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Cool New Features in Python 3.5
Search
Kevin McCarthy
November 07, 2015
Programming
1
330
Cool New Features in Python 3.5
Kevin McCarthy
November 07, 2015
Tweet
Share
More Decks by Kevin McCarthy
See All by Kevin McCarthy
Functors
kevin1024
1
140
Introduction to Programming
kevin1024
0
210
Processing Workshop
kevin1024
0
170
Processing Talk
kevin1024
0
230
Sick && Insane Programming Practices
kevin1024
1
270
Introduction to Machine Learning
kevin1024
2
260
Other Decks in Programming
See All in Programming
アクターシステムに頼らずEvent Sourcingする方法について
j5ik2o
6
700
QA環境で誰でも自由自在に現在時刻を操って検証できるようにした話
kalibora
1
140
いりゃあせ、PHPカンファレンス名古屋2025 / Welcome to PHP Conference Nagoya 2025
ttskch
1
170
良いユニットテストを書こう
mototakatsu
11
3.6k
Azure AI Foundryのご紹介
qt_luigi
1
190
2025.01.17_Sansan × DMM.swift
riofujimon
2
540
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
240
20241217 競争力強化とビジネス価値創出への挑戦:モノタロウのシステムモダナイズ、開発組織の進化と今後の展望
monotaro
PRO
0
280
Stackless и stackful? Корутины и асинхронность в Go
lamodatech
0
1.3k
Flatt Security XSS Challenge 解答・解説
flatt_security
0
730
HTML/CSS超絶浅い説明
yuki0329
0
190
Итераторы в Go 1.23: зачем они нужны, как использовать, и насколько они быстрые?
lamodatech
0
1.4k
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Making the Leap to Tech Lead
cromwellryan
133
9k
A Modern Web Designer's Workflow
chriscoyier
693
190k
KATA
mclloyd
29
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
A Tale of Four Properties
chriscoyier
157
23k
Mobile First: as difficult as doing things right
swwweet
222
9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Agile that works and the tools we love
rasmusluckow
328
21k
Transcript
Cool new features in Python 3.5
None
Unpacking >>> a,b,c = [1,2,3] >>> print(a) 1 >>> print(b)
2 >>> print(c) 3
Unpacking: LEVELED >>> a = [1,2,3] >>> b = [4,5,6]
>>> print([*a, *b]) [1,2,3,4,5,6] PEP 448
Build Dictionaries >>> defaults = {"database": "mysql"} >>> my_config =
{"database": "sqlite", "password": "cats"} PEP 448
Build Dictionaries >>> defaults.update(my_config) >>> print defaults {"database": "sqlite", "password":
"cats"} PEP 448
Build Dictionaries >>> print {**defaults, **my_config} {"database": "sqlite", "password": "cats"}
PEP 448
Call Functions with Unpacking >>> connect(**defaults, **my_config) PEP 448
math.isclose() >>> a = 1.0 >>> b = 1.00000000001 >>>
math.isclose(a,b) True >>> math.isclose(1.0, 1.1) False >>> math.isclose(1.0, 1.01, abs_tol=.1) True PEP 485
>>> import math >>> math.pow(a, 2) + math.pow(b, 2) ==
math.pow(c,2)
>>> a**2 + b**2 == c**2
import numpy as np from numpy.linalg import inv, solve #
Using dot function: S = np.dot((np.dot(H, beta) - r).T, np.dot(inv(np.dot(np.dot(H, V), H.T)), np.dot(H, beta) - r))
@ matrix multiplication operator @ >>> S = (H @
beta - r).T @ \ inv(H @ V @ H.T) @ (H @ beta - r) PEP 465
os.scandir() PEP 471
yield from (python 3.4) @asyncio.coroutine def view(request): data = yield
from db_query(request.q) more = yield from db_query(request.p) return yield from render(data, more) PEP 380
async and await async def view(request): data = await db_query(request.q)
more = await db_query(request.p) return await render(data, more) PEP 492
type annotations def hello(name: str) -> str: return "hello, {}".format(name)
PEP 484
type annotations def hello(name: str) -> str: return "hello, {}".format(name)
def greet(name): print greeting(name) PEP 484 types!
gradual typing def hello(name: str) -> str: return "hello, {}".format(name)
def greet(name): print(greeting(name)) types! no types! PEP 484
import typing from typing import List def combine(input: List[str]) ->
int: return input.join() PEP 484
much, much more! PEP 461, 479… • subprocess.run() • collections.OrderedDict
4-100 times faster • bytes % args, bytearray % args • functools.lru_cache() 10-25x faster • StopIteration handling inside generators better • A new installer for Windows
Thanks! https://docs.python.org/3/whatsnew/3.5.html