Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CCCの最終発表
Search
キンジョウショウタロウ
March 04, 2022
0
25
CCCの最終発表
2021に参加さしてもらったときの最終発表スライド(TrendOwl)
キンジョウショウタロウ
March 04, 2022
Tweet
Share
More Decks by キンジョウショウタロウ
See All by キンジョウショウタロウ
逆求人スライド
kinjyo
0
13
夏のゼミ課題
kinjyo
0
17
春学期最終プレゼンスライド
kinjyo
0
27
monthly-LT-LINE.pdf
kinjyo
0
29
NSEEMのLTの資料です
kinjyo
0
81
LINE_DC
kinjyo
0
19
easy_easy_re.pdf
kinjyo
0
250
easy_easy3.pdf
kinjyo
0
23
学校登壇.pdf
kinjyo
0
13
Featured
See All Featured
Visualization
eitanlees
146
15k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
Statistics for Hackers
jakevdp
797
220k
4 Signs Your Business is Dying
shpigford
183
22k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
1.9k
Code Reviewing Like a Champion
maltzj
521
39k
Gamification - CAS2011
davidbonilla
80
5.2k
The Cult of Friendly URLs
andyhume
78
6.2k
Transcript
None
.FNCFST Α͏͔Μ ͿΜͿΜ ͍ʔͪΌΜ 5ZMFS Ωϯδϣ ͱΈͬ͘͢ ࣎լ ژ ౦ژ
ౡ aaࢲ͕ͳ͍ͯ͠·͢
None
IUUQTRJJUBDPNBCDTIPUBSPJUFNTGDCBDF
ເΛඳ͖͍ͨ ʮϑΝΫτνΣοΫͷຽओԽʯ Λࢦ͍ͯ͠·͢ʜ
੍࡞ 🤔ϑΣΠΫχϡʔεͱ
໋࣏ʹؔΘΔ͜ͱ ۽ຊ ถબڍ
ϫΫνϯࣗͷҙࢥͰଧͯΔ ͷʹɺଧͭͳͱڧ੍͞Εͯ͠ ·͍ͬͯΔʜ ࣮ࡍͷମݧஊ ͕ใݯΛͭʹཔΓ͗ͯ͢ɺ ภͬͨใͰ͢Α͏ʹͳΓɺ ձ͕Γཱͨͳ͍ ϝϯόʔͷ5͘Μ ༑ୡͷ/͞Μ
૯লͷൃදͰϲ݄ʹҎ্ͷਓϑΣΠΫχϡʔεʹ৮Ε͍ͯΔ Ҿ༻ɿIUUQTXXXTPVNVHPKQNBJO@TPTJLJKPIP@UTVTJOE@TZPIJJIPZVHBJ@IUNM ʢຊݚڀձʢୈճʣࢿྉ̍ʮʰϑΣΠΫχϡʔεʱʹؔ͢ΔΞϯέʔτௐࠪ݁Ռʯʢ/3*ʣʣ
ίϩφʹؔ͢ΔใͷਅِΛஅͰ͖ͳ͔ͬͨਓ͕ଟ͍ ɾίϩφՒͷຊͰɺ ʮ͓౬Ͱ৽ܕίϩφΠϧε͕ࢮ໓͢Δʯ ʮ৽ܕίϩφΠϧεͷӨڹͰ τΠϨοτϖʔύʔ͕ෆ͢Δʯ ͳͲͷِใ͕֦ࢄͨ͠ɻ
ɾ૯লͷௐࠪͰɺ͜ΕΒͷِใͷ͏ͪ ҰͭͰ৴ͨ͡ͱ͑ͨਓ ྸ͕͘ͳΔ΄Ͳଟ͘ɺ ̍̑ʙ̍̕ࡀͰ̏̒ʹٴΜͰ͍Δɻ Ҿ༻ɿIUUQTXXXTPVNVHPKQNBJO@DPOUFOUQEG ʢ৽ܕίϩφΠϧεײછʹؔ͢Δใྲྀ௨ௐࠪʣ
Ҿ༻ɿIUUQTXXXOBUVSFDPNBSUJDMFTT ʢ5IFPOMJOFDPNQFUJUJPOCFUXFFOQSPBOEBOUJWBDDJOBUJPOWJFXTʣ ϫΫνϯର͕͜ͷ··૿͑ଓ͚Δͱ͍ۙকདྷऔΓࠐ·Εͯ͠·͏ةݥੑ͕͋Δͱ͍͏ݚڀ݁Ռ😱
͍ۙকདྷͷةػײ ใੜଶܥͰੜ͞ΕΔใ͕૿େ͠ɺ ͔ͭෆ͔֬ͳใͷׂ߹͕ߴ͍ʢͭ·ΓϊΠζ͕ ଟ͍ʣใաଟͷঢ়ଶ͕ੜ͡Δ͜ͱͰɺِใΛ ࣄ࣮ͱޡೝͨ͠Γɺ͋Δ͍ࣄ࣮Λࣄ࣮ͩͱ৴͡ ΒΕͳ͍Α͏ͳ͜ͱ͕සൟʹى͜ΔΑ͏ʹͳΕ ɺৗੜ׆ܦࡁ׆ಈɺ͞Βʹຽओओٛʹ ෛͷӨڹ͕ٴͿՄೳੑ͕͋Δɻ
ʁ Έͳ͞ΜɺϑΣΠΫχϡʔε ରࡦͬͯ·͔͢ʁ ʁ
͍͍͑ ͍ ΠϯελάϥϜʹͯνʔϜϝϯόʔௐ ʮϑΣΠΫχϡʔεʹԿ͔͠ΒରࡦΛ͍ͯ͠Δ͔ʯ ߴߍੜɾେֶੜਓ
͔͠͠ϑΣΠΫχϡʔε ʹର͢ΔҙࣝΛ͍࣋ͬͯ Δਓ·ͩ·ͩগͳ͍ ௐࠪͷ݁Ռ ϑΣΠΫχϡʔεʹ৮ΕΔසʹʹ૿͍͑ͯΔ
ײओ؍ʹࠨӈ͞Εͣ ٬؍తͳࠜڌ Λ࣋ͬͯΒ͍͍ͨ Ծઆɾඪ ؆୯ʹϑΣΠΫχϡʔεఆʹ৮ΕΒΕΔ ڥ͕ඞཁͰ͋ΔͷͰͳ͍͔ɻ
੍࡞ ✌੍࡞
IUUQTUXJUUFSDPNUSFOE@PXM
σβΠϯͷϙΠϯτ ը૾ʹΛॻ͔ͳ͍ ҙࣄ߲ΛಡΜͰΒ͏ͨΊ ʹɺ͋͑ͯςΩετʹ͔݁͠ ՌΛॻ͖·ͤΜͰͨ͠ πΠʔτΛݟΔͱ͖ʹ ਓؒը૾͔ΒݟΔ 👎
੍࡞ 👩🎓ੳख๏
Ϟσϧºػցֶश Ҿ༻ɿIUUQTXXXSJLFMBCKQTUVEZ ਖ਼͍͠ใ '",&
IUUQTXXXBBBJPSHPDTJOEFYQIQ"""*"""*QBQFSWJFX'JMF அख๏ ɾΞΧϯτ͕ొ͞Ε͔ͯΒͲΕ͙Β͍͔ ɾݩπΠʔτ͔πΠʔτ͞Ε͔ͯΒͲΕ͙Β͍ܦա͍ͯ͠Δ͔ ɾೝূࡁΈΞΧϯτ͔Ͳ͏͔ ɾϓϩϑΟʔϧը૾Λࢦఆ͍ͯ͠Δ͔Ͳ͏͔ ɾ͍͍Ͷ͍ͯ͠Δ
ɾϑΥϩϫʔͷ ɾϑΥϩʔ͍ͯ͠Δ ɾ໊લͷจࣈ ɾࣗݾհͷจࣈ πΠʔτจষʹҰͱΒΘΕͣੳΛߦ͏ 📌 ࢀߟจ
੍࡞ ✍Ϟσϧͷਫ਼ɾಁ໌ੑ
ֶशϞσϧਫ਼͑ Ϟσϧͷ༧ଌ ࣮ ࡍ
ಁ໌ੑϨϙʔτΛ࡞ެ։ tensorboardXΛ༻͍ͨϞσϧͷՄࢹԽ
ੳ 🧠 πΠʔτऩू IUUQTUXJUUFSDPNUSFOE@PXM ϑΣΠΫੳ 🤖 ใࠂ
IUUQTUSFOEPXMTVHPLVOBSJUBJEFW ϙʔλϧαΠτ աڈͷੳ͕ݟΕΔ ੳϦΫΤετ͕ૹΕΔ
"NB[PO$MPVE8BUDI&WFOU πΠʔτ "NB[PO4 "NB[PO-BNCEB "NB[PO%ZOBNP%# ఆظ࣮ߦ ੳ ཧը໘ ϩά ը૾Ξοϓϩʔυ
ٕज़ߏ (PPHMF"QQ4DSJQU ϑϩϯτΤϯυ
੍࡞ 😁5SFOE0XMͷظ
ϑΣΠΫ χ ϡ ʔε ૣ ͘ ͕ Δ
ιʔείʔυϞσϧɺݟͷެ։ ڵຯΛ࣋ͬͯͩ͘͞ΔํΛ૿͠ ք۾શମͷٕज़ྗΛ্͛Δ ࠓޙͷల ҙݟΛΒ͏ɾΊΔ ݚڀػؔاۀͱͷڞಉݚڀ ༷ʑੈʹ֦ࢄ
ެ։ɾڞ༗͢Δ ਫ਼ΛߴΊΔ ࣗવݴޠॲཧͱϞσϧͷྑΛ ༻͍ͨϞσϧͷ։ൃ ΞϓϩʔνΛ૿͢ 5XJUUFS8FCҎ֎ͰͷϦϦʔε ༷ʑͳΞόλʔઃఆͰݕূΛߦ͏
None
༧උࢿྉ
ϑϩϯτΤϯυ Ϧʔμʔ ػցֶशɾαʔόʔαΠυ Α͏͔Μ ͿΜͿΜ ͍ʔͪΌΜ 5ZMFS Ωϯδϣ ͱΈͬ͘͢ αʔϕΠɾσβΠϯ
αʔϕΠɾϢʔβΠϯλϏϡʔ αʔόʔαΠυ
4DSBQCPY νʔϜ࿈ܞ /PUJPO 4MBDL
ͳͥɺʮϑΝΫτνΣοΫʯͱ͍͏ ΞϓϩʔνΛऔ͍ͬͯΔͷ͔ʁ
ใੜଶܥਐԽ͠ଓ͚͍ͯΔ Ҿ༻ɿIUUQTXXXEFMPJUUFDPNKQKBQBHFTTUSBUFHZBSUJDMFTDCTJOGPSNBUJPOFQJEFNJDIUNM ʢੈلͰສഒʹ૿େͨ͠ใୡྗʙใͷٸͳછʮΠϯϑΥσϛοΫʯͱʣ
None
օ͞ΜͷྗΛି͍ͯͩ͘͠͞ 5XJ UU FS ͷதͷਓͱ͓Γ߹͍ͷํ ޙ΄Ͳ͓ܨ͍͖͍͗ͨͩͨͰ͢ʂ
ࢲୡ͕͍ͬͯΔ͜ͱԿ͕ຊൃɺੈքॳͷϓϩμΫτͳͷ͔ ैདྷڝ߹ͱԿ͕ҧ͏ͷ طଘͷΈͱͷҧ͍ /-1 ࣗવݴޠॲཧ ͰͰ͖Δ͜ͱ طଘͷࣙॻɾίʔύεΛͱʹ จ຺Λղੳ͢Δ ٯʹݴ͑ ৽͍͠ࣄɾະͷʹ
ରॲͰ͖ͳ͍͔͠Εͳ͍
ࢲୡ͕͍ͬͯΔ͜ͱԿ͕ຊൃɺੈքॳͷϓϩμΫτͳͷ͔ ैདྷڝ߹ͱԿ͕ҧ͏ͷ طଘͷΈͱͷҧ͍ Ϟσϧղܾ͠·͢ɻ ະͷࣄ࣮ʹରͯ͠ ٬؍తͳੳ͕Մೳ
ࢲୡ͕͍ͬͯΔ͜ͱԿ͕ຊൃɺੈքॳͷϓϩμΫτͳͷ͔ ैདྷڝ߹ͱԿ͕ҧ͏ͷ ػցֶशϞσϧͷΈ 3// -45. ࠶ؼܕχϡʔϥϧ ωοτϫʔΫ ϩʔΧϧͳੳ $//
ΈࠐΈχϡʔϥϧ ωοτϫʔΫ άϩʔόϧͳੳ /-1Ͱকདྷతʹਫ਼্Λʂ [ࢀߟจݙ] Yang Liu, Yi-Fang Brook Wu (2018) Early Detection of Fake News on Social Media Through Propagation Path Classi fi cation with Recurrent and Convolutional Networks