Upgrade to Pro — share decks privately, control downloads, hide ads and more …

メルカリにおけるアルゴリズム ~写真検索機能を例に~

メルカリにおけるアルゴリズム ~写真検索機能を例に~

ソフトウェアエンジニア育成プログラム「Build@Mercari」のアルゴリズムの講義において、メルカリの写真検索機能で用いられている近似最近傍探索アルゴリズムについて話した際の資料です

KosukeArase

June 17, 2020
Tweet

More Decks by KosukeArase

Other Decks in Programming

Transcript

  1. 2 荒瀬 晃介 (Kosuke Arase) • US@Tokyo ML/DE Team エンジニア

    ◦ 東京大学大学院 原田研究室卒 ◦ 2017/08~2019/03: インターン ◦ 2019/04: 新卒入社 ◦ 2019/07~2020/03: 写真検索 (TechLead) ◦ 2020/04~: US@Tokyo ML/DE Team • 専門: 画像認識,3次元点群認識 • 出品時の画像認識機能/写真検索機能 • Twitter, GitHub: @KosukeArase $ whoami
  2. 5 • 画像から Neural Network を用いて 特徴量 (ベクトル) を抽出 •

    ベクトルを近傍探索インデックスに追加 データの流れ Neural Network 0.32 0.55 0.23 0.12 ︙ 0.33 ベクトル 近傍探索 インデックス
  3. 14 • 特徴ベクトルの次元数: d = 1,840 次元 • 特徴ベクトルの数: N

    = 数千万 O(Nd) なので 1,840 x 数千万 = 数百億回の計算を毎回する…? 実際には…
  4. 15 • 特徴ベクトルの次元数: d = 1,840 次元 • 特徴ベクトルの数: N

    = 数千万 O(Nd) なので 1,840 x 数千万 = 数百億回の計算を毎回する…? 2.9 GHz で動作する CPU が1クロックで1命令処理できるとすると、 秒間の計算数は数十億 → 検索に毎回数十秒かかってしまう 実際には…
  5. 16 • 特徴ベクトルの次元数: d = 1,840 次元 • 特徴ベクトルの数: N

    = 数千万 データベースのサイズも問題。 float32 (4 Bytes) のベクトルとすると、index のサイズは、、 4 x 1,840 x 数千万 = 数百 GB →メモリに載らない! 実際には…
  6. 17 import faiss, timeit import numpy as np d =

    1024 # ベクトルの次元数 N = 10**5 # データ数 index_flat = faiss.IndexFlatL2(d) # 近傍探索 index index_flat.add(np.random.random((N, d)).astype('float32')) # N本のd次元ベクトルを作成しindexへ追加 query = np.random.random((1, d)).astype('float32') # クエリの作成 def search(_index, _query): _index.search(_query, 10) # 検索 timeit.timeit("search(index_flat, query)", setup="from __main__ import search, index_flat, query", number=1) Facebook AI Research (FAIR) が開発した近傍探索ライブラリ Faiss Demo
  7. 22 • Locality Sensitive Hashing (LSH) ◦ Falconn, etc. •

    Tree based ◦ FLANN, Annoy*1, etc. • Graph based ◦ NMSLIB • データ圧縮 ◦ ハミング系、ベクトル量子化 (VQ)、直積量子化 (PQ) • 転置ファイルインデックス (IVF) 近似近傍探索アルゴリズム/ライブラリ *1 Approximate Nearest Neighbors Oh Yeah
  8. 23 • Locality Sensitive Hashing (LSH) ◦ Falconn, etc. •

    Tree based ◦ FLANN, Annoy*1, etc. • Graph based ◦ NMSLIB • データ圧縮 ◦ ハミング系、ベクトル量子化 (VQ)、直積量子化 (PQ) • 転置ファイルインデックス (IVF) 近似近傍探索アルゴリズム/ライブラリ *1 Approximate Nearest Neighbors Oh Yeah
  9. 24 • 近似最近傍探索の最前線 ◦ 松井勇佑 (相澤・山崎・松井研究室講師) ◦ 以下ではこちらの資料の画像を引用 • メルカリUSの

    @kumon とともに CVPR@2020 で Tutorial 開催 ◦ Image Retrieval in the Wild ◦ 08:30-, June 19th (AM), 2020 ◦ (日本時間6/20の午前0:30) ◦ メルカリの写真検索がトップに! 参考資料
  10. 28

  11. 32 1本のベクトル (D=1,024次元、32bit float) を M=64分割してK=256個 (8bit) のコードブックを保持する場合のメモリは? • Before:

    32D [bit] = 4D [Byte] = 4,096 [Byte] • After: 8M [bit] = M [byte] = 64 [Byte] 直積量子化 (メモリ効率)
  12. 38 データベース中の各データベクトル Xi に対し以下の操作を行う • K-meansなどで粗い量子化器を用いて、空間を c 個に分割する • 入力と最も近い代表点

    (Cj) との距離の差 (残差、ri = Xi - Cj) を計算 • 粗い量子化の結果 (j) と残差 ri のPQコード (ri’) を保存 転置ファイルインデックス (IVF, indexing) j = 1 j = 2 j = c
  13. 39 クエリ q に対し以下の操作を行う • クエリ q に最も近い代表点 (Cj) との距離の差

    (残差、r = q - Cj) を計算 転置ファイルインデックス (IVF, search)
  14. 40 クエリ q に対し以下の操作を行う • クエリ q に最も近い代表点 (Cj) との距離の差

    (残差、r = q - Cj) を計算 • j に登録されている全てのコード (N個) との近似距離を計算 (O(DK+MN)) • 近似距離が最も近いものを選ぶ 転置ファイルインデックス (IVF, search) j = c j = 2 j = 1
  15. 41 結局どれくらい早くなるの? Brute force • O(ND) = 1,024 x 3,000万

    = 300億回の計算 IVF+PQ • 粗い量子化: O(DC) = 1,024 x 8,192 = 1,000万回の計算 • PQ: O(DK+M(N/C)) = 1,024 x 256 + 64 x (3,000万/8,192) = 50 万の計算 数千倍の高速化! • 特徴ベクトルの次元数 : D = 1,024 次元 • 特徴ベクトルの数: N = 3,000万 • 粗い量子化: c = 8,192 • PQの分割数: M = 64 • コードサイズ: K = 256
  16. 42 import faiss, timeit import numpy as np d =

    1024 # ベクトルの次元数 N = 10**6 # データ数 index_pq = faiss.index_factory(d, 'IVF512,PQ64') # 近傍探索 index (IVF + PQ) index_pq.train(np.random.random((10**5, d)).astype('float32')) # 事前学習 index_pq.add(np.random.random((N, d)).astype('float32')) # N本のd次元ベクトルを作成しindexへ追加 query = np.random.random((1, d)).astype('float32') # クエリの作成 def search(_index, _query): _index.search(_query, 10) # 検索 timeit.timeit("search(index_pq, query)", setup="from __main__ import search, index_pq, query", number=1) Brute force では 10**6 で xxx 秒、10**7 で OOM したが、、 Demo (IVF+PQ)