Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
転置インデックスでどう検索しているか
Search
kotaroooo0
November 19, 2020
Technology
0
290
転置インデックスでどう検索しているか
kotaroooo0
November 19, 2020
Tweet
Share
More Decks by kotaroooo0
See All by kotaroooo0
データ鮮度を落とさずに安全にReindexしたい
kotaroooo0
0
82
検索エンジン自作入門 Go Conference 2021 Spring
kotaroooo0
17
7.3k
俺の全文検索エンジン(Go製)を作り始めた
kotaroooo0
0
110
ぼくのかんがえたさいきょうのDocker Build
kotaroooo0
0
86
Other Decks in Technology
See All in Technology
vLLM meetup Tokyo
jpishikawa
1
270
25分で解説する「最小権限の原則」を実現するための AWS「ポリシー」大全
opelab
7
1.8k
~宇宙最速~2025年AWS Summit レポート
satodesu
1
630
20250623 Findy Lunch LT Brown
3150
0
700
Perk アプリの技術選定とリリースから1年弱経ってのふりかえり
stomk
0
120
AI技術トレンド勉強会 #1MCPの基礎と実務での応用
nisei_k
1
240
VCpp Link and Library - C++ breaktime 2025 Summer
harukasao
0
210
工具人的一生: 開發很多 AI 工具讓我 慵懶過一生
line_developers_tw
PRO
0
1k
新卒3年目の後悔〜機械学習モデルジョブの運用を頑張った話〜
kameitomohiro
0
360
データプラットフォーム技術におけるメダリオンアーキテクチャという考え方/DataPlatformWithMedallionArchitecture
smdmts
4
460
JSX - 歴史を振り返り、⾯⽩がって、エモくなろう
pal4de
3
1k
標準技術と独自システムで作る「つらくない」SaaS アカウント管理 / Effortless SaaS Account Management with Standard Technologies & Custom Systems
yuyatakeyama
2
510
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Agile that works and the tools we love
rasmusluckow
329
21k
Fireside Chat
paigeccino
37
3.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
41
7.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
190
Rails Girls Zürich Keynote
gr2m
94
14k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Transcript
2020/11/19 @kotaroooo0 సஔΠϯσοΫεͰ Ͳ͏ݕࡧ͍ͯ͠Δ͔
ࣗݾհ
సஔΠϯσοΫεɺͪΖΜͬͯΔΑ? grepΈͨ͘ஞ࣍ݕࡧͯ͠ΔͱΊͪΌͪ͘Ό͕͔͔࣌ؒΔ͔ ΒɺݕࡧΛૣ͘͢ΔͨΊʹࣄલʹຊͷ࣍Έ͍ͨͳͷΛ ࡞͓ͬͯ͘ΜͰ͠ΐ? ͰɺͲ͏ͬͯݕࡧ͍ͯ͠Δ͔·Ͱ… ఆฉ͖ख
సஔΠϯσοΫεΛ Δ
సஔΠϯσοΫε netflix prime amazon - సஔΠϯσοΫε = ࣙॻ + సஔϦετ
1 1 2 3 4 5 5 ࣙॻ సஔϦετ ϙεςΟϯάϦετ
సஔΠϯσοΫε netflix prime amazon - Word-level inverted list ͱݺΕɺ୯ޠ͕จॻͷԿ୯ޠ͔อଘ͢Δ͜ͱ͋Δ -
DocID;offset1,ofset2… 1;2 1;3 2;3 3;5 4;1 5;2 5;3 2;5
୯ޠͷҐஔใͳʹʹ͏? - ϑϨʔζΛ୳͢߹ - ʮAmazon Primeʯͱݕࡧͨ͠߹ - D1: “a prime
concern of Amazon” - D2: “Amazon Prime movies” - Ґஔใ͕͋Ε୯ޠͷॱংΛߟྀ͢Δ͜ͱ͕Ͱ͖ΔͷͰɺD2ͷΈΛώοτ͞ ͤΔ͜ͱ͕Ͱ͖ͨΓɺD2ͷείΞΛେ͖ͨ͘͠Γ͢Δ͜ͱ͕Ͱ͖Δ
ݕࡧ͢Δ
ANDݕࡧͱORݕࡧ -ΫΤϦ: “pink orange blue” -ANDݕࡧ: 3 -ORݕࡧ: 1,2,3,4,5,6 pink
Orange blue 6 3 4 5 2 1
φΠʔϒͳݕࡧઓུ - ϙεςΟϯάϦετΛࠪ͢Δํࣜ - TAAT(Term At A Time) - ϙεςΟϯάϦετΛ̍ͭͣͭॲཧ͢Δɻಉ࣌ʹ։͘ϙεςΟϯάϦετͷΧʔι
ϧ͚̍ͭͩɻ - ୯ޠ͝ͱʹࠪ͢Δ - DAAT(Document At A Time) - શ୯ޠͷϙεςΟϯάϦετΛಉ࣌ʹॲཧ͢ΔɻΫΤϦʹؚ·ΕΔ୯ޠͷϙε ςΟϯάϦετͷΧʔιϧΛͯ͢։͖ɼಉ࣌ʹਐΊ͍ͯ͘ɻ - υΩϡϝϯτ͝ͱʹࠪ͢Δ
TAATͰͷANDݕࡧ 1. ϙεςΟϯάϦετͷαΠζ͕࠷খͷͷ(prime)Λબ͠ΛɺAccumulator࡞ [2, 5] 2. amazonͷϦετΛࠪ ɾ2ؚ·Ε͍ͯΔ͔?5ؚ·Ε͍ͯΔ͔?ͷΈͷνΣοΫͰOK netflix prime
amazon 1;2 1;3 2;3 4;1 5;2 5;3 2;5
TAATͰͷORݕࡧ 1. ͲͷΩʔͰྑ͍ͷͰAccumlatorΛ࡞ [1,2,5] (amazon) 2. ॏෳ͠ͳ͍શͯͷΩʔΛݟͯϚʔδ ✌(‘ω'✌ ) ݪ࢝త
( ✌'ω')✌ netflix prime amazon 1;2 1;3 2;3 4;1 5;2 5;3 2;5
DAATͰͷANDݕࡧ - Amazon AND prime - Accumulated = [] netflix
prime amazon 1;2 1;3 2;3 4;1 5;2 5;3 2;5
DAATͰͷANDݕࡧ - Amazon AND prime - Accumulater = [2] netflix
prime amazon 1;2 1;3 2;3 4;1 5;2 5;3 2;5
DAATͰͷANDݕࡧ - Amazon AND prime - Accumulate = [2, 5]
netflix prime amazon 1;2 1;3 2;3 4;1 5;2 5;3 2;5
DAATͰͷORݕࡧ - ΧʔιϧΛಈ͔ͯ͠ɺશͯͷཁૉΛॏෳͳ͘AccumulatorʹՃ ✌(‘ω'✌ ) ݪ࢝త ( ✌'ω')✌ netflix prime
amazon 1;2 1;3 2;3 4;1 5;2 5;3 2;5
DAATͱTAAT - DAATͷϝϦοτ - DAATͷํ͕ɺলϝϞϦͰࡁΉ(ྫ: τοϓ10݅ݕࡧ) - DAATͷํ͕ɺΫΤϦ༻ޠ͕จॻͷಛఆͷ݅Λຬ͍ͨͯ͠Δ͔Ͳ͏͔Λ؆୯ʹࣝ ผͰ͖Δ(ྫ: ϑϨʔζݕࡧɺϑΟϧλϦϯά)
- ElasticsearchͰར༻͞Ε͍ͯΔLuceneDAATํࣜ - ORݕࡧݪ࢝తͳΈͰ͋ΓɺANDݕࡧΑΓଟ͘ͷυΩϡϝϯτΛࠪ͢ΔͨΊɺ ॏ͍ͨ - ݕࡧΤϯδϯORݕࡧʹ࠷దԽ͞Ε͍ͯΔ
ORݕࡧͷ ࠷దԽ४උ
Ͳ͏ߴԽ͢Δ͔ - DAATΛϕʔεʹվળ͢Δ - ݕࡧ݁Ռ্͕Ґ͚݅ͩඞཁͰ͋Δɺ্ҐʹདྷΔՄೳੑ͕ͳ͍จষͷධՁΛεΩοϓ ͢Δ͜ͱʹΑΓɺॲཧͷߴԽ͕Մೳ - ͍߹Θͤʹର্ͯ͠Ґk݅ͷΈΛऔΓग़͢͜ͱΛtop-k query processingͱݺͿ
จষͷϥϯΫ͚ - ্Ґk݅Λग़ྗ͢ΔͨΊʹɺΫΤϦʹରͯ͠ͲͷจষͷॱҐ͕ߴ͍͔Λܾఆ͢Δඞཁ͕͋ Δ - TF-IDF, Okapi BM25
సஔΠϯσοΫεͷ֦ு - సஔΠϯσοΫεʹରͯ͠ɺ֤୯ޠͷείΞ࠷େͱυΩϡϝϯτ͝ͱͷ୯ޠͷείΞ Λ༩͢Δ - ܗࣜ DocID;Score netflix prime amazon
1;5 1;3 2;1 3;2 4;1 5;2 5;1 2;3 max_score=5 max_score=3 max_score=2
Top-k Query ɾmax-score ɾinterval-based running
max-score - ্ҐkҐʹೖΔͨΊͷείΞ5ඞཁͱ͢Δͱɺ”amazon”,”prime”ͷmax_score5ະຬͳͷ Ͱɺ”amazon”ͷΈ”prime”ͷΈΛؚΉจষީิ͔Β֎ΕΔ netflix prime amazon max_score=5 max_score=3 max_score=2
1;5 1;1 2;1 4;1 5;1 2;3 5;2 5;1 3;3
max-score - ্Ґ1݅Λऔಘ͍ͨ͠ - จॻ1: score6 - ඞͣ”netflix”ΛؚΉυΩϡϝϯτ͡Όͳ͍ͱμϝ netflix prime
amazon max_score=5 max_score=3 max_score=2 1;5 1;1 2;1 4;1 5;1 2;3 5;2 5;1 3;3
max-score - “netflix”ΛؚΉจॻ5·ͰΧʔιϧΛඈ͢ - จॻ5είΞ4 - จॻ1,5ͷΈΛධՁ͢Δ͚ͩͰऴྃ netflix prime amazon
max_score=5 max_score=3 max_score=2 1;5 1;1 2;1 4;1 2;3 5;2 3;3 5;1 5;1
Interval-base - max_scoreΑΓ͞ΒʹεΩοϓͰ͖Δ - ͕͜͜ΒΜͰྗਚ͖ͨ࣌ؒͪ͠ΐ͏Ͳ͍͍ͩΖ͏…
LuceneͰ - Lucent 8Ͱmax-scoreͷൃలܗͰ͋ΔWAND͕ΘΕ͍ͯ·͢ - Ding, Shuai, and Torsten Suel.
"Faster top-k document retrieval using block-max indexes." Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval. 2011. - 2019/3/14ϦϦʔεͷLucene 8Ͱ্ͷΞϧΰϦζϜ͕࣮͞ΕΔͳͲࠓͰޮతͳΞϧ ΰϦζϜͷݚڀ͕ଓ͍͍ͯΔ APA
సஔΠϯσοΫεͷ ࣮
·ͱΊ - సஔΠϯσοΫε༷ʑͳϝλใΛՃ͢Δ͜ͱͰ֦ு͞ΕΔ(୯ޠͷΦϑηοτɺε ίΞɺϙΠϯλ) - సஔΠϯσοΫεʹରͯ͠ANDݕࡧɺORݕࡧ͢ΔࡍͷφΠʔϒͳํ๏ - TAAT: ୯ޠ͝ͱʹࠪ͢Δ -
DAAT: จॻ͝ͱʹࠪ͢Δ - DAATʹର͢ΔORݕࡧʹ࠷దԽ - max-score: ୯ޠ͝ͱͷ࠷େείΞͱݱࡏͷ࠷େείΞΛอ࣋͢Δ͜ͱͰࢬמΓΛߦ ͍୳ࡧΛεΩοϓ͢Δ - LuceneͰDAAT͕࠾༻͞Ε͓ͯΓɺݱࡏͰΞϧΰϦζϜ͕վળ͞Ε͍ͯΔ