Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ガチホコのやり方〜キンメダイ美術館編〜
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
kotoma
July 02, 2016
0
310
ガチホコのやり方〜キンメダイ美術館編〜
@kotomaの主観資料シリーズです。
kotoma
July 02, 2016
Tweet
Share
More Decks by kotoma
See All by kotoma
ガチホコのやり方〜アロワナモール編〜
kotoma
1
180
ガチホコのやり方〜ネギトロ炭鉱編〜
kotoma
0
200
ガチホコのやり方〜デカライン高架下編〜
kotoma
0
170
ガチホコのやり方〜モンガラキャンプ場編〜
kotoma
0
200
BPStudy #112 LT @kotomacontact
kotoma
1
470
ガチホコのやり方〜モズク農園編〜
kotoma
0
260
ガチホコのやり方〜ホッケふ頭編〜
kotoma
0
250
ガチホコのやり方〜マヒマヒリゾートスパ編〜
kotoma
0
650
ガチホコのやり方〜ヒラメが丘団地編〜
kotoma
0
310
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
160
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Visualization
eitanlees
150
17k
The untapped power of vector embeddings
frankvandijk
1
1.6k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
Transcript
ΨνϗίͷΓํ ʙΩϯϝμΠඒज़ؗฤʙ
͓͜ͱΘΓ w ͜ͷࢿྉ͋͘·ͰͲ͜ʹҙࣝΛஔ͔͘ͱ͍ ͏ࢀߟఔͷͷͰ͢ɻ w ༰͋͘·Ͱͷओ؍Ͱ͢ɻඞͣউͯΔ͜ ͱΛอূ͢ΔͷͰ͋Γ·ͤΜɻࢼ߹ల։ʹ Ԡཱͯͪ͡ճΓࣗͰߟ͑·͠ΐ͏ɻ w ը૾Χϯ;:͞Μͷϒϩά͔Β͓आΓ͠·ͨ͠ɻ
جຊ w ߴࠩͷ͋ΔεςʔδͰ͔ͳΓ ͍ɻ w ث͝ͱͷ༗རෆརͦ͜·Ͱͳ ͍ҹɺεύγϣ௨Γʹ͍͘ɻ w λονμϯ΄΅Ͱ͖ͳ͍ɻ w
উརڥքΧϯτ̏̌લޙɺ̍ ࢼ߹ʹ̍ճӡΔνϟϯε͕͋ ΔͷͰམͪண͍ͯͭɻ w ӴϥΠϯ̑̌લޙɺઌʹऔΒ ΕͯযΒͳ͍Ͱ͔ͬ͠Γ̏̌Ͱ ࢭΊΔɻ
ॳಈʢ෮ؼޙʣ w "͋ͨΓͷࣹఔثʹҙࣝ Λஔ͘ɻ w #͋ͨΓμΠφϞϒϥε λʔͳͲͷஈ্ר͖ࠐΈܥ ثͷજ෬ʹܯռΛ͢Δɻ͵Β ΕͯͨΒͱΓ͋͑ͣϘϜ์Δ ͙Β͍ͷΠϝʔδͰྑ͍ɻ
w ૬ख͔Βಉ͋ͨ͡ΓݟΒ Ε͍ͯΔͱࢥͬͯಈ͘Α͏ʹ ͢Δɻ " " #
߈Ίํ w "͋ͨΓʢલޙʣ· Ͱ͍࣋ͬͯ͘͜ͱΛҙ ࣝ͢Δɻ w ࣍ͷεϥΠυ͔Βಈ༳ ͠ͳ͍ͨΊͷӡͼͷ ܦ࿏Λ͍͔ͭ͘ڍ͛ͯ ͓͘ɻ
"
ܦ࿏ w ਖ਼߈๏ͷ߈Ίํ w ొͬͯଈࠨͰతʹ ౸ୡ͢ΔɻΑ͘ෛ͚Δ ܦ࿏ͷͣͳͷͰΈΜ ͳͬͯΔͱࢥ͏ɻ w ΠΧੵΈʹΦεεϝ
ܦ࿏̎ w ཪΛ͔͘߈Ίํ w ఢ͕Ϧε͔Β͘Δͱ͖ ʹࢭΊΒΕʹ͍͕͘ɺ தԝ͋ͨΓʹऔΓ͜΅ ͨ͠ఢ͕͍Δͱܾ·Γ ʹ͍͘ͷͰҙࣝͯ͠ அ͢Δɻ
w ΠΧੵΈʹΦεεϝ
ܦ࿏̏ w શʹཪΛ͔͘ΓํɺΛ͍ͭͨ࣌ Ͱ·Ͱ͍͚Δɻ w ճస൫ճసܕͳͷͰඞͣࠨʢఢਞଆɿ ਤͰҹ͕ग़ͯΔํͷ൘ʣͷύωϧʹ Δɻӈͷύωϧ͔Βಧ͔ͳ͍ɻ w า͖δϟϯϓʹͳΔͷͰώτੵΈʹΦ
εεϝ w ͔ͨ͠Βͬͪ͜ΛݟͯΔث͕ए༿͔ϩʔ ϥʔͩͱ߈ܸ͕ಧ͔ͳ͍ͷͰແࢹͰ͖Δɻ w ຯํ͕͜ͷܦ࿏Λ͏ͱ͖ఢͷઢ͕ ্͕Γ͍͢ͷͰԼͷͭΛҰͯ͠ԉ ޢ͢Δɻ
ܦ࿏̐ w ϦʔυΛͱͬͨޙʹதԝ·Ͱ͞ Εͨޙͷ࠶νϟϨϯδˍ࠷ޙʹΧ ϯτϦʔυΛऔΔͨΊʹ৻ॏʹ ਐΊ͍ͨͱ͖ͷܦ࿏ɻ w ΩϧΛऔΓͳ͕ΒਐΉ͜ͱɻӈଆ ͷߴ௨࿏Έͳ͕ΒਐΉɻ w
ͱʹ͔͘ແཧ͠ͳ͍Ͱ৻ॏʹਐΊ ΔɻຯํʹཔΔɻ w ຯํͷແఢ͕࣋ͪଟ͍ͱ͖ʹͬ ͯΒ͍ͳ͕ΒϥΠϯΛ্͛ͭͭ ਐΉɻ͕ࣗ࣋ͬͯΕͬͯϥ ΠϯΛ্͍͛ͯ͘ɻ
कΓ͔ͨ w લޙ·Ͱ͍࣋ͬͯͬ ͨ͋ͱͤΊΒΕΔͱ͖ ͷӴϥΠϯɻ w ͜ͷલޙͷϥΠϯ Λ͑ΒΕͳ͍Α͏ʹ ͢ΔɻΑ͏ʹృ͍ͬͯ ͘ɻ
w Ϧʔυঢ়گͰҾ͔ͳ͍
ܯռϙΠϯτ w ͜͜ͷΦϒδΣΫτΛඞ ͣృΔɻ w μΠφϞແఢ͕࣋ͪଟ ͍ͱ͖͜͜ܯռ͢Δɻ w વ͚ͩͲɺԡͯ͠Δঢ় گͳͷʹͰड͚Α͏ͱ
ͯࣗ͠ਞͰͨͳ͍ɺલ ͰΕΔͳΒલͰࢭΊΔɻ