Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
さまざまなグラフ描画(1) / Various graphical representatio...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
56
さまざまなグラフ描画(1) / Various graphical representations (1)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第7回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
サイバーフィジカル社会、金融の未来とアイデアソン / Cyber Physical Society, Future of Finance, and Ideathon
ks91
PRO
0
47
マニフェスト: 人類の知のフロンティアに向けた拡張的足場へ / Manifesto: Toward Expansive Scaffolding for Humanity's Knowledge Frontier
ks91
PRO
0
9
続・スマートコントラクトと分散ファイナンス / Smart Contracts and Decentralized Finance, Continued
ks91
PRO
0
48
スマートコントラクトと分散ファイナンス / Smart Contracts and Decentralized Finance
ks91
PRO
0
64
シン・ブロックチェーン / Truth of Blockchain
ks91
PRO
0
97
パスワード/パスフレーズと認証 / Password, Passphrase and Authentication
ks91
PRO
0
37
git と GitHub / git and GitHub
ks91
PRO
0
36
ソフトウェアの開発と保守 / Software Development and Maintenance
ks91
PRO
0
50
インターネットの特徴 / Features of the Internet
ks91
PRO
0
34
Other Decks in Technology
See All in Technology
〜『世界中の家族のこころのインフラ』を目指して”次の10年”へ〜 SREが導いたグローバルサービスの信頼性向上戦略とその舞台裏 / Towards the Next Decade: Enhancing Global Service Reliability
kohbis
3
1.1k
ソフトウェアテストのAI活用_ver1.25
fumisuke
1
560
CDK Vibe Coding Fes
tomoki10
1
530
話題の MCP と巡る OCI RAG ソリューションの旅 - Select AI with RAG と Generative AI Agents ディープダイブ
oracle4engineer
PRO
5
110
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
1
390
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
1
240
第64回コンピュータビジョン勉強会「The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition」
x_ttyszk
0
170
マルチプロダクト環境におけるSREの役割 / SRE NEXT 2025 lunch session
sugamasao
1
390
ポストコロナ時代の SaaS におけるコスト削減の意義
izzii
1
260
大量配信システムにおけるSLOの実践:「見えない」信頼性をSLOで可視化
plaidtech
PRO
0
290
事例で学ぶ!B2B SaaSにおけるSREの実践例/SRE for B2B SaaS: A Real-World Case Study
bitkey
1
340
データ基盤からデータベースまで?広がるユースケースのDatabricksについて教えるよ!
akuwano
3
160
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
7
330
Designing for Performance
lara
610
69k
Gamification - CAS2011
davidbonilla
81
5.4k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Facilitating Awesome Meetings
lara
54
6.5k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
For a Future-Friendly Web
brad_frost
179
9.8k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 7 (1) (WBS) 2024 7 (1) — 2024-11 – p.1/18
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 7 (1) — 2024-11 – p.2/18
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 7 (1) — 2024-11 – p.3/18
( ) ( ) 2024 7 (1) — 2024-11 –
p.4/18
(line chart) x y cda-demo “ -1.R” Git “ -1.R”
1 2024 7 (1) — 2024-11 – p.5/18
“ .txt” 1 1 <- read.table(" .txt", header=T) A 4
plot( 1$ , 1$A , type="o", pch=0, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A ") ‘type="o"’ ‘pch=0’ ‘xaxp=c(1,4,3)’ x 1 4 3 1.5 2024 7 (1) — 2024-11 – p.6/18
1 2 3 4 40 50 60 70 80 A⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ 2024 7 (1) — 2024-11 – p.7/18
plot ( ) type ( ) : "p" ( )
"l" ( ) "o" ( ) "h" ( ) cf. https://r-charts.com/base-r/line-types/ (Line plot types) pch (plotting character)( ) : 0 ( ) 1 (◦) 2 (△) 3 (+) 4 (×) cf. https://r-charts.com/base-r/pch-symbols/ lty (line type)( ) : 1 ( ) 2 ( ) 3 ( ) cf. https://r-charts.com/base-r/line-types/ (Line types) lwd (line width)( ) 2024 7 (1) — 2024-11 – p.8/18
(1/2) A B plot( 1$ , 1$A , type="o", lty=1,
pch=1, col=1, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A,B,C,D ") par(new=T) plot( 1$ , 1$B , type="o", lty=2, pch=2, col=2, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) ‘par(new=T)’ ( ) B plot ‘axes=F’ ‘ann=F’ ‘ylim’ ‘xaxp’ ‘lty’ ‘pch’ ‘col’ 2024 7 (1) — 2024-11 – p.9/18
(2/2) C D par(new=T) plot( 1$ , 1$C , type="o",
lty=3, pch=3, col=3, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) par(new=T) plot( 1$ , 1$D , type="o", lty=4, pch=4, col=4, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) legend("topleft", legend=names( 1)[2:5], lty=1:4, pch=1:4, col=1:4) ‘legend(. . .)’ ( top-left) 2024 7 (1) — 2024-11 – p.10/18
1 2 3 4 40 50 60 70 80 A,B,C,D⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ A⤌ B⤌ C⤌ D⤌ 2024 7 (1) — 2024-11 – p.11/18
(radar chart) n n 0 n n 2024 7 (1)
— 2024-11 – p.12/18
(1/2) AI(GPT-4) install.packages("fmsb") library("fmsb") 2 <- read.table(" .txt", header=T) maxmin
<- data.frame( =c(7,0), =c(7,0), =c(7,0), =c(7,0), =c(7,0)) fmsb ( ) maxmin 2024 7 (1) — 2024-11 – p.13/18
(2/2) data <- rbind(maxmin, 2) radarchart(data, seg=7, centerzero=T, title="GPT-4 ")
legend("topleft", legend=c(" ", " "), lty=1:2, pch=16, col=c("black", "red")) ‘rbind(. . .)’ ‘radarchart(. . .)’ 2 3 ( 1∼ ) ‘seg=7’ 7 ‘centerzero=T’ 0 2024 7 (1) — 2024-11 – p.14/18
GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ ༠ㄪᛶ ㄔᐇᛶ እྥᛶ ᚰ㓄ᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ 2024
7 (1) — 2024-11 – p.15/18
2 barplot(as.matrix( 2), beside=T, ylim=c(0, 7), yaxp=c(1,7,6), col=c("black", "red"), density=c(25,
50), legend.text=c(" ", " "), args.legend=list(x="topleft"), main="GPT-4 ") ‘as.matrix(. . .)’ ( ) ‘args.legend’ 2024 7 (1) — 2024-11 – p.16/18
༠ㄪᛶ እྥᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ 1 2 3
4 5 6 7 ㄔᐇᛶ ᚰ㓄ᛶ 2024 7 (1) — 2024-11 – p.17/18
2024 7 (1) — 2024-11 – p.18/18