Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
さまざまなグラフ描画(1) / Various graphical representatio...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
65
さまざまなグラフ描画(1) / Various graphical representations (1)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第7回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
デジタルトランスフォーメーションと民主主義 / Digital Transformation and Democracy
ks91
PRO
0
6
We Never Took the Kobayashi Maru Test Until Now. What Do You Think of Our Solutions? — Journeys of the Mind Through a No-Win Game
ks91
PRO
0
19
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
75
ロボットを雰囲気(ヴァイブ)でプログラミングするこどもたち / Children Vibe-Programming Robots
ks91
PRO
0
23
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 3
ks91
PRO
0
31
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 2
ks91
PRO
0
35
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
160
未来へのフォワードキャスト / Forward Cast to the Future
ks91
PRO
0
88
発表と総括 / Presentations and Summary
ks91
PRO
0
62
Other Decks in Technology
See All in Technology
Webアプリケーションにオブザーバビリティを実装するRust入門ガイド
nwiizo
7
860
未経験者・初心者に贈る!40分でわかるAndroidアプリ開発の今と大事なポイント
operando
5
730
データ分析エージェント Socrates の育て方
na0
5
1k
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1.1k
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
130
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
570
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
470
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
2
190
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
150
なぜテストマネージャの視点が 必要なのか? 〜 一歩先へ進むために 〜
moritamasami
0
230
KotlinConf 2025_イベントレポート
sony
1
140
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
580
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
GitHub's CSS Performance
jonrohan
1032
460k
How to train your dragon (web standard)
notwaldorf
96
6.2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
A Modern Web Designer's Workflow
chriscoyier
696
190k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Navigating Team Friction
lara
189
15k
For a Future-Friendly Web
brad_frost
180
9.9k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Embracing the Ebb and Flow
colly
87
4.8k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 7 (1) (WBS) 2024 7 (1) — 2024-11 – p.1/18
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 7 (1) — 2024-11 – p.2/18
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 7 (1) — 2024-11 – p.3/18
( ) ( ) 2024 7 (1) — 2024-11 –
p.4/18
(line chart) x y cda-demo “ -1.R” Git “ -1.R”
1 2024 7 (1) — 2024-11 – p.5/18
“ .txt” 1 1 <- read.table(" .txt", header=T) A 4
plot( 1$ , 1$A , type="o", pch=0, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A ") ‘type="o"’ ‘pch=0’ ‘xaxp=c(1,4,3)’ x 1 4 3 1.5 2024 7 (1) — 2024-11 – p.6/18
1 2 3 4 40 50 60 70 80 A⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ 2024 7 (1) — 2024-11 – p.7/18
plot ( ) type ( ) : "p" ( )
"l" ( ) "o" ( ) "h" ( ) cf. https://r-charts.com/base-r/line-types/ (Line plot types) pch (plotting character)( ) : 0 ( ) 1 (◦) 2 (△) 3 (+) 4 (×) cf. https://r-charts.com/base-r/pch-symbols/ lty (line type)( ) : 1 ( ) 2 ( ) 3 ( ) cf. https://r-charts.com/base-r/line-types/ (Line types) lwd (line width)( ) 2024 7 (1) — 2024-11 – p.8/18
(1/2) A B plot( 1$ , 1$A , type="o", lty=1,
pch=1, col=1, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A,B,C,D ") par(new=T) plot( 1$ , 1$B , type="o", lty=2, pch=2, col=2, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) ‘par(new=T)’ ( ) B plot ‘axes=F’ ‘ann=F’ ‘ylim’ ‘xaxp’ ‘lty’ ‘pch’ ‘col’ 2024 7 (1) — 2024-11 – p.9/18
(2/2) C D par(new=T) plot( 1$ , 1$C , type="o",
lty=3, pch=3, col=3, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) par(new=T) plot( 1$ , 1$D , type="o", lty=4, pch=4, col=4, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) legend("topleft", legend=names( 1)[2:5], lty=1:4, pch=1:4, col=1:4) ‘legend(. . .)’ ( top-left) 2024 7 (1) — 2024-11 – p.10/18
1 2 3 4 40 50 60 70 80 A,B,C,D⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ A⤌ B⤌ C⤌ D⤌ 2024 7 (1) — 2024-11 – p.11/18
(radar chart) n n 0 n n 2024 7 (1)
— 2024-11 – p.12/18
(1/2) AI(GPT-4) install.packages("fmsb") library("fmsb") 2 <- read.table(" .txt", header=T) maxmin
<- data.frame( =c(7,0), =c(7,0), =c(7,0), =c(7,0), =c(7,0)) fmsb ( ) maxmin 2024 7 (1) — 2024-11 – p.13/18
(2/2) data <- rbind(maxmin, 2) radarchart(data, seg=7, centerzero=T, title="GPT-4 ")
legend("topleft", legend=c(" ", " "), lty=1:2, pch=16, col=c("black", "red")) ‘rbind(. . .)’ ‘radarchart(. . .)’ 2 3 ( 1∼ ) ‘seg=7’ 7 ‘centerzero=T’ 0 2024 7 (1) — 2024-11 – p.14/18
GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ ༠ㄪᛶ ㄔᐇᛶ እྥᛶ ᚰ㓄ᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ 2024
7 (1) — 2024-11 – p.15/18
2 barplot(as.matrix( 2), beside=T, ylim=c(0, 7), yaxp=c(1,7,6), col=c("black", "red"), density=c(25,
50), legend.text=c(" ", " "), args.legend=list(x="topleft"), main="GPT-4 ") ‘as.matrix(. . .)’ ( ) ‘args.legend’ 2024 7 (1) — 2024-11 – p.16/18
༠ㄪᛶ እྥᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ 1 2 3
4 5 6 7 ㄔᐇᛶ ᚰ㓄ᛶ 2024 7 (1) — 2024-11 – p.17/18
2024 7 (1) — 2024-11 – p.18/18