Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
さまざまなグラフ描画(1) / Various graphical representatio...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
39
さまざまなグラフ描画(1) / Various graphical representations (1)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第7回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
続・インクルーシブな社会へ / Continuing Towards an Inclusive Society
ks91
PRO
0
11
AGI (人工一般知能) と創る新しく奇妙な社会 / New and Stranger Society built with AGI
ks91
PRO
0
55
回帰分析/大規模言語モデルと統計 / Regression Analysis, Large Language Models and Statistics
ks91
PRO
0
61
多重比較/相関分析 / Multiple Comparison and Correlation Analysis
ks91
PRO
0
61
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 3
ks91
PRO
0
56
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 2
ks91
PRO
0
42
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 1
ks91
PRO
1
68
インクルーシブな社会へ / Toward an Inclusive Society
ks91
PRO
0
14
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
64
Other Decks in Technology
See All in Technology
Classmethod AI Talks(CATs) #15 司会進行スライド(2025.02.06) / classmethod-ai-talks-aka-cats_moderator-slides_vol15_2025-02-06
shinyaa31
0
170
組織貢献をするフリーランスエンジニアという生き方
n_takehata
1
1k
Datadog APM におけるトレース収集の流れ及び Retention Filters のはなし / datadog-apm-trace-retention-filters
k6s4i53rx
0
320
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.2k
High Performance PHP
cmuench
0
140
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
230
テストアーキテクチャ設計で実現する高品質で高スピードな開発の実践 / Test Architecture Design in Practice
ropqa
3
710
現場で役立つAPIデザイン
nagix
29
10k
7日間でハッキングをはじめる本をはじめてみませんか?_ITエンジニア本大賞2025
nomizone
2
1.4k
MC906491 を見据えた Microsoft Entra Connect アップグレード対応
tamaiyutaro
1
480
FastConnect の冗長性
ocise
1
9.6k
プロセス改善による品質向上事例
tomasagi
1
1.6k
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Pragmatic Product Professional
lauravandoore
32
6.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
400
Bash Introduction
62gerente
610
210k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
We Have a Design System, Now What?
morganepeng
51
7.4k
KATA
mclloyd
29
14k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
Why Our Code Smells
bkeepers
PRO
335
57k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 7 (1) (WBS) 2024 7 (1) — 2024-11 – p.1/18
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 7 (1) — 2024-11 – p.2/18
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 7 (1) — 2024-11 – p.3/18
( ) ( ) 2024 7 (1) — 2024-11 –
p.4/18
(line chart) x y cda-demo “ -1.R” Git “ -1.R”
1 2024 7 (1) — 2024-11 – p.5/18
“ .txt” 1 1 <- read.table(" .txt", header=T) A 4
plot( 1$ , 1$A , type="o", pch=0, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A ") ‘type="o"’ ‘pch=0’ ‘xaxp=c(1,4,3)’ x 1 4 3 1.5 2024 7 (1) — 2024-11 – p.6/18
1 2 3 4 40 50 60 70 80 A⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ 2024 7 (1) — 2024-11 – p.7/18
plot ( ) type ( ) : "p" ( )
"l" ( ) "o" ( ) "h" ( ) cf. https://r-charts.com/base-r/line-types/ (Line plot types) pch (plotting character)( ) : 0 ( ) 1 (◦) 2 (△) 3 (+) 4 (×) cf. https://r-charts.com/base-r/pch-symbols/ lty (line type)( ) : 1 ( ) 2 ( ) 3 ( ) cf. https://r-charts.com/base-r/line-types/ (Line types) lwd (line width)( ) 2024 7 (1) — 2024-11 – p.8/18
(1/2) A B plot( 1$ , 1$A , type="o", lty=1,
pch=1, col=1, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A,B,C,D ") par(new=T) plot( 1$ , 1$B , type="o", lty=2, pch=2, col=2, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) ‘par(new=T)’ ( ) B plot ‘axes=F’ ‘ann=F’ ‘ylim’ ‘xaxp’ ‘lty’ ‘pch’ ‘col’ 2024 7 (1) — 2024-11 – p.9/18
(2/2) C D par(new=T) plot( 1$ , 1$C , type="o",
lty=3, pch=3, col=3, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) par(new=T) plot( 1$ , 1$D , type="o", lty=4, pch=4, col=4, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) legend("topleft", legend=names( 1)[2:5], lty=1:4, pch=1:4, col=1:4) ‘legend(. . .)’ ( top-left) 2024 7 (1) — 2024-11 – p.10/18
1 2 3 4 40 50 60 70 80 A,B,C,D⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ A⤌ B⤌ C⤌ D⤌ 2024 7 (1) — 2024-11 – p.11/18
(radar chart) n n 0 n n 2024 7 (1)
— 2024-11 – p.12/18
(1/2) AI(GPT-4) install.packages("fmsb") library("fmsb") 2 <- read.table(" .txt", header=T) maxmin
<- data.frame( =c(7,0), =c(7,0), =c(7,0), =c(7,0), =c(7,0)) fmsb ( ) maxmin 2024 7 (1) — 2024-11 – p.13/18
(2/2) data <- rbind(maxmin, 2) radarchart(data, seg=7, centerzero=T, title="GPT-4 ")
legend("topleft", legend=c(" ", " "), lty=1:2, pch=16, col=c("black", "red")) ‘rbind(. . .)’ ‘radarchart(. . .)’ 2 3 ( 1∼ ) ‘seg=7’ 7 ‘centerzero=T’ 0 2024 7 (1) — 2024-11 – p.14/18
GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ ༠ㄪᛶ ㄔᐇᛶ እྥᛶ ᚰ㓄ᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ 2024
7 (1) — 2024-11 – p.15/18
2 barplot(as.matrix( 2), beside=T, ylim=c(0, 7), yaxp=c(1,7,6), col=c("black", "red"), density=c(25,
50), legend.text=c(" ", " "), args.legend=list(x="topleft"), main="GPT-4 ") ‘as.matrix(. . .)’ ( ) ‘args.legend’ 2024 7 (1) — 2024-11 – p.16/18
༠ㄪᛶ እྥᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ 1 2 3
4 5 6 7 ㄔᐇᛶ ᚰ㓄ᛶ 2024 7 (1) — 2024-11 – p.17/18
2024 7 (1) — 2024-11 – p.18/18