Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pythonではじめる機械学習(教師あり学習)
Search
KURUM
January 10, 2018
Technology
0
590
Pythonではじめる機械学習(教師あり学習)
Pythonではじめる機械学習(教師あり学習)
KURUM
January 10, 2018
Tweet
Share
More Decks by KURUM
See All by KURUM
SQSとPipesで回す BedrockによるPDF解析
kuniiskywalker
0
72
Other Decks in Technology
See All in Technology
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
Copilot Studio ハンズオン - 生成オーケストレーションモード
tomoyasasakimskk
0
170
速習AGENTS.md:5分で精度を上げる "3ブロック" テンプレ
ismk
6
1.9k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.2k
新規事業におけるGORM+SQLx併用アーキテクチャ
hacomono
PRO
0
440
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
12
81k
プレーリーカードを活用しよう❗❗デジタル名刺交換からはじまるイベント会場交流のススメ
tsukaman
0
190
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3k
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.8k
クラウドとリアルの融合により、製造業はどう変わるのか?〜クラスメソッドの製造業への取組と共に〜
hamadakoji
0
210
データ戦略部門 紹介資料
sansan33
PRO
1
3.8k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
940
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Statistics for Hackers
jakevdp
799
220k
A designer walks into a library…
pauljervisheath
209
24k
Docker and Python
trallard
46
3.6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
We Have a Design System, Now What?
morganepeng
53
7.8k
The Invisible Side of Design
smashingmag
302
51k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Designing for Performance
lara
610
69k
Transcript
PythonͰ͡ΊΔػցֶश ڭࢣ͋Γֶश 2ষ
▪ 自己紹介 ΞδΣϯμ ▪ 2.1ɹΫϥεྨͱճؼ ▪ 2.2ɹ൚Խɺաద߹ɺద߹ෆ ▪ 2.3ɹڭࢣ͋ΓػցֶशΞϧΰϦζϜ
Twi$erID: @kuniiskywalker ࣗݾհ 仕事:ソフトウェア・デベロッパー 趣味:minecra5 機械学習は個人的に勉強中
2.1ɹΫϥεྨͱճؼ
教師あり機械学習問題は⼤きく「クラス分類」と「回帰」に分類される 回帰 クラス分類 Ϋϥεྨͱճؼ
Ϋϥεྨ
Ϋϥεྨ త ͋Β͔͡ΊఆΊΒΕͨબࢶͷத͔ΒΫϥεϥϕϧΛ༧ଌ͢Δ͜ͱ 2Ϋϥεྨ ଟΫϥεྨ
2Ϋϥεྨ ྨثΛ༻͍ͯదͳ2छྨͷʮΫϥεʯʹྨ͢Δํ๏ ྫɿϝʔϧ͕εύϜ͔൱͔
ଟΫϥεྨ 3ͭҎ্ͷΫϥε͢Δํ๏ ྫɿखॻ͖ࣈͷը૾͔ΒࣈΛೝࣝ
ճؼ
ճؼ త ࿈ଓͷ༧ଌ גՁͷมಈ༧ ڝഅͷ༧
Ϋϥεྨͱճؼͷ͍͚ ΫϥεྨͱճؼΛ۠ผ͢Δʹɺग़ྗʹ࿈ଓੑ͕͋Δ͔ߟ͑Δ
2.2ɹ൚Խɺաద߹ɺద߹ෆ
൚Խ Ϟσϧ͕ະͷσʔλʹରͯ͠༧ଌग़དྷ͍ͯΔঢ়ଶ
աద߹ ܇࿅ηοτʹద߹͗ͯ͢͠ɺ৽͍͠σʔλʹରͯ͠༧ଌͰ͖ͯͳ͍ Overfitting
ద߹ෆ ୯७͗͢ΔϞσϧʢಛྔ͕গͳ͍ʣͰɺ ະͷσʔλʹରͯ͢͠Δ༧ଌਫ਼͕Ͱͳ͍ঢ়ଶ ྫɿϘʔτΛߪೖͨ͠ͱ͍͏ಛྔ͚ͩͩͱɺஉੑͱঁੑͷ߹ߪೖ࣌ظͳͲ ɹɹߟྀ͠ͳ͍ͱ༧ଌʹରͯ͠ਫ਼͕ग़ͳ͍ Underfitting
ڭࢣ͋ΓػցֶशΞϧΰϦζϜ
ʢέΠ͖Μ΅͏΄͏ʣ K-࠷ۙ๏ ֶशσʔλΛϕΫτϧ্ۭؒʹϓϩοτ͓͖ͯ͠ɺະͷσʔλ͕ಘΒΕͨΒɺ ͔ͦ͜Βڑ͕͍ۙॱʹҙͷKݸΛऔಘ͠ɺଟܾͰσʔλ͕ଐ͢ΔΫϥεΛਪఆ͢Δɻ
ઢܗϞσϧ ʮతมʯͱʮઆ໌มʯͷؔੑΛઢܗͰ͋ΒΘͨ͠ͷ తม આ໌ม
ઢܗϞσϧʹΑΔճؼ ઢܗճؼ Ϧοδճؼ Lassoճؼ Α͘ΘΕΔճؼख๏ ύϥϝʔλʔΛ܇࿅σʔλ͔Βֶश͢Δํ๏ Ϟσϧͷෳࡶ͞Λ੍ޚ͢Δํ๏
ઢܗϞσϧʹΑΔճؼ Ұൠతͳ༧ଌࣜ yˆ=w[0]×x[0]+w[1]×x[1]+ɾɾɾ+w[p]×x[p]+b ɾ wͱbֶश͞ΕͨϞσϧͷύϥϝʔλʔ ɾ yˆϞσϧ͔Βͷ༧ଌ ɾpಛྔͷ ɾ w͖Λද͢ύϥϝʔλʔͰॏΈɺ͘͠ݺΕΔ
ɾ bย ʢಛྔ͕ෳͷ߹ʣ
ઢܗϞσϧʹΑΔճؼ
ઢܗճؼ(௨ৗ࠷খೋ๏) ਫ৭ͷઢͷ͞ͷೋͷ͕࠷খʹͳΔઢΛͱΊΔ
正則化を使った回帰 ਖ਼ଇԽͱʁ աద߹Λ;͙ͤͨΊʹΛ͑ΔΈ L2ਖ਼ଇԽͱL1ਖ਼ଇԽ͕͋Δ
L2ਖ਼ଇԽ Ϟσϧͷաద߹Λ͙ͨΊʹɺ ͷେ͖͞Λ࠷খݶʹͯ͠ग़ྗͷӨڹΛ͑Δಛ͕͋Δ ͷେ͖͞Λ࠷খݮʹ͢Δ > Λ0ʹ͚ۙͮΔ > ग़ྗͷӨڹΛ͑Δ > աద߹Λ͙
L1ਖ਼ଇԽ ͍͔ͭ͘ͷΛશʹ0ʹ͢Δ = ͍͔ͭ͘ͷಛΛແࢹ͢Δ ݁Ռಛྔͷݟ௨͕͠Α͘ͳΓɺॏཁͳͷ͕໌Β͔ʹͳΔ
リッジ回帰 ༧ଌʹ͏ࣜɺ௨ৗ࠷খೋ๏ͱಉ͡ ઢܗճؼʹL2ਖ਼ଇԽΛࢪͨ͠ͷ
Lassoճؼ ༧ଌʹ͏ࣜɺ௨ৗ࠷খೋ๏ͱಉ͡ ઢܗճؼʹL1ਖ਼ଇԽΛࢪͨ͠ͷ