Upgrade to Pro — share decks privately, control downloads, hide ads and more …

A Journey as Staff Engineer at SmartNews! 〜一年間の...

Avatar for Ikuo Suyama Ikuo Suyama
September 04, 2025
380

A Journey as Staff Engineer at SmartNews! 〜一年間の経験から語る、ICキャリアの今とこれから〜

Scrum Fest Mikawa 2025 の発表資料です。

Avatar for Ikuo Suyama

Ikuo Suyama

September 04, 2025
Tweet

More Decks by Ikuo Suyama

Transcript

  1. Who am I? / ͓·ͩΕ Ikuo Suyama / ಃࢁҭஉ •

    Staff Engineer • Ads Backend Expert • Nov. 2020~ SmartNews, Inc. • Interest: Fishing, Camping, Gunpla, Anime
  2. Who am I? / ͓·ͩΕ Ikuo Suyama / ಃࢁҭஉ •

    Ads Backend Expert • Nov. 2020~ SmartNews, Inc. • Interest: Fishing, Camping, Gunpla, Anime •Staff Engineer
  3. 5 ՝୊ҙࣝͱϞνϕʔγϣϯ Over the past few years we've seen a

    flurry of books unlocking the engineering manager career path, like: The Manager's Path by Camille Fournier, The Making of a Manager by Julie Zhuo, and my own, An Elegant Puzzle. The management career isn't an easy one, but increasingly there is a map available. …The transition into Staff Engineer, and its further evolutions like Principal Engineer, remains particularly challenging and undocumented. ͜͜਺೥ɺΤϯδχΞϦϯάϚωʔδϟʔͷΩϟϦΞύεΛղ͖໌͔͢ຊ͕࣍ʑͱग़൛͞Ε͍ͯ·͢ɻྫ ͑͹ɺ… ϚωδϝϯτͷΩϟϦΞ͸ܾͯ͠؆୯ͳಓͰ͸͋Γ·ͤΜ͕ɺঃʑʹͦͷʮ஍ਤʯ͕੔͖͍ͬͯͯ·͢ɻ …ҰํͰɺStaff Engineer ΁ͷҠߦɺ͞ΒʹͦͷਐԽܗͰ͋Δ Principal Engineer ΁ͷಓͷΓ͸ɺґવͱ ͯ͠ಛʹ೉͘͠ɺे෼ʹه࿥͞Ε͍ͯͳ͍ঢ়گͰ͢ɻ — Staff Engineer Leadership beyond the management track ᶃ ଘࡏΛ஌ͬͯ΋Β͍͍ͨʂ ᶄ ΤϯδχΞΩϟϦΞύεͷબ୒ࢶ͕૿͑Δͱخ͍͠ʂ ᶅ ϙδγϣϯ͕૿͑Δͱخ͍͠ʂ
  4. 13 1-1. Staff Engineer ͷҙຯͱ༝དྷ Staff Officer: ࢀ๳কߍ ໊લͷ༝དྷ “an

    army officer who helps the officer in charge to plan military activities” ࢦش׭ͷԼͰ܉ࣄ׆ಈͷܭըΛࢧԉ͢Δকߍʢࢀ๳কߍʣɻ — Cambridge Dictionary ࢘ྩ׭Λܭըɾ෼ੳͰิࠤ͢Δٕज़ࢀ๳ సͯ͡ɺݱ୅ιϑτ΢ΣΞ૊৫ʹ͓͍ͯ
  5. 15 1-2. ཱͪҐஔͱظ଴͞ΕΔ੹೚ — Staff Engineer: Leadership beyond the management

    track / Introduction Team Group Division Department (܎௕?) (՝௕?) (෦௕?) (ہ௕?) ͨͿΜ͍͍ͩͨ ͜͏͍͏ײ͡ͷ෼ঠ ΠϝʔδɿνʔϜΑΓେ͖ͳ૊৫ΛݟΔ ”TechLead”
  6. 16 1-2. ཱͪҐஔͱظ଴͞ΕΔ੹೚ — Staff Engineer: Leadership beyond the management

    track / Introduction Team Group Division Department Senior ɹ Staff Senior ɹ Staff Group Head Manager Division Head(VPoE) CTO (܎௕?) (՝௕?) (෦௕?) (ہ௕?) SmartNews ͷ͹͍͋ ΠϝʔδɿνʔϜΑΓେ͖ͳ૊৫ΛݟΔ ”TechLead”
  7. 17 1-2. ཱͪҐஔͱظ଴͞ΕΔ੹೚ — Staff Engineer: Leadership beyond the management

    track / Introduction Team Group Division Department Senior ɹ Staff Senior ɹ Staff Group Head Manager Division Head(VPoE) CTO (܎௕?) (՝௕?) (෦௕?) (ہ௕?) Ikuo ΠϚίίʂ ΠϝʔδɿνʔϜΑΓେ͖ͳ૊৫ΛݟΔ ”TechLead”
  8. 18 1-2. ཱͪҐஔͱظ଴͞ΕΔ੹೚ Manager ͱͷҧ͍… ؍఺ Staff / Staff-plusʢICʣ ManagerʢEM/Director

    ͳͲʣ ओͨΔ੹຿ ٕज़ํ਑ͷઃఆɾฤूɺϝϯλϦϯά/εϙϯα ʔγοϓɺ૊৫ͷҙࢥܾఆ΁ٕज़จ຺Λ஫ೖɻ ਓͱ࢓ࣄͷϚωδϝϯτʢௐ੔ɾӡ༻ʣɻ ͠͹͠͹ௐ੔/ࣄ຿ͷߑਫʹࡽ͞Ε͕ͪɻ ݖݶͷݯઘ “ҕ೚ʢproxiedʣ͞Εͨݖݶ”ʹґଘɻ௨ৗ͸Ϛ ωʔδϟͳͲͷϦʔμʔ͔Βͷҕ೚ͰӨڹྗΛൃ ش͢Δɻ ૊৫্ͷਖ਼ࣜͳݖݶʢ্ه “ҕ೚ݩ” ଆʣɻ Staff ͱ࿈ܞͭͭ͠ྖҬͷ࠷ऴ੹೚Λෛ͏ɻ είʔϓ νʔϜ/ෳ਺ྖҬʹԣஅٕͯ͠ज़ํ޲ΛݗҾʢಛ ఆྖҬͷϦʔυɺ·ͨ͸޿ൣғͷ੔߹औΓʣɻ νʔϜ/૊৫ͷӡӦͱ༏ઌॱҐ෇͚ɻඞཁʹ Ԡͯ͡ ٕज़඼࣭ͷ੹຿Λ Staff ʹ“ৡΔ”/೚ͤ Δɻ Өڹͷग़͠ํ ࣗ෼Ͱ͸ͳ͘“पғΛ௨ͯ͡”੒ՌΛ૿෯ʢϝϯλ ϦϯάΑΓ΋εϙϯαʔγοϓΛް͘ɺٕज़ࢹ఺ ͰҙࢥܾఆΛޙԡ͠ʣɻ ໾্ׂͷ؅ཧɾௐ੔Ͱ࣮ߦྗΛੜΉʢͨͩ͠ “؅ཧ࢓ࣄͷ߃ৗతͳؙ౤͛” ͸ආ͚Δʣɻ ਓͷ؅ཧ ICʢIndividual ContributorʣͰ͋Γɺ௚઀ͷϐʔ ϓϧϚωδϝϯτ͸໾ׂ֎ɻ ධՁɾฤ੒ɾ༏ઌ౓ௐ੔ͳͲͷϐʔϓϧ/Φϖ Ϩʔγϣϯ؅ཧ͕Ұ࣍੹຿ɻ Staff Engineer What do Staff engineers actually do? / Frequently Asked Questions
  9. 20 1-2. ཱͪҐஔͱظ଴͞ΕΔ੹೚ Manager ͱͷ Overlap Engineering Management Triangle ओઓ৔

    Impactग़͢ͷʹ ඞਢ ΍Δ͚Ͳ ϝΠϯͰ͸ͳ͍ ਓࣄɾධՁ͸ ੹຿֎ ͜ͷ΁Μ͕ ओ੹຿ Managerͱ ڠۀ
  10. 21 Staff Engineer — Staff archetypes 3. Solverʢιϧόʔʣ • ໾ׂɿඇৗʹෳࡶͳ໰୊ʹਂ͘౿ΈࠐΈɺղܾͷಓےΛݟ͚ͭΔεϖγϟ

    Ϧετɻ • ಛ௃ɿ૊৫͕༏ઌ͢Δະղܾͷ՝୊ʹऔΓ૊Έɺ໰୊͕ऩଋ͢Ε͹ผͷ ʮϗοτεϙοτʯʹҠಈ͢ΔελΠϧɻνʔϜ୯ҐΑΓݸਓ΁ͷґଘܕ Ͱ͋Δ͜ͱ͕ଟ͍ ɻ 2. ArchitectʢΞʔΩςΫτʣ • ໾ׂɿ૊৫ͷॏཁͳٕज़ྖҬʹରͯ͠ɺํ޲ੑɾ඼࣭ɾΞϓϩʔνΛ ୲อɻ • ಛ௃ɿϏδωεχʔζɾϢʔβʔཁ݅ɾٕज़੍໿Λਂ͘ཧղͨ͠ɺෳ ਺νʔϜΛӽٕ͑ͨज़ઓུͷਪਐऀɻେن໛ɾෳࡶͳ؀ڥԼͰ׆༂ɻ 4. Right Handʢӈ࿹ʣ • ໾ׂɿΤάθΫςΟϒͷิࠤ໾ͱͯ͠ɺ૊৫಺֎ͷෳࡶͳ໰୊ʹରԠ͠ɺ ϦʔμʔͷӨڹྗΛ֦ு͢Δɻ • ಛ௃ɿٕज़͚ͩͰ͸ͳ͘ɺϏδωεɺจԽɺਓͷ໰୊·Ͱ෯޿ؔ͘༩ɻ༏ ઌ౓ͷߴ͍՝୊ʹରॲ͠ɺ௚઀తͳϚωδϝϯτΛ࣋ͨͣʹڧ͍ӨڹྗΛ ൃشɻ 1-3. Staff Engineer ͷ 4ͭͷ "ΞʔΩλΠϓ" 1. Tech LeadʢςοΫϦʔυʣ • ໾ׂɿಛఆνʔϜͷΞϓϩʔνͱ࣮ߦΛಋ͘ɻϚωʔδϟʔͱ ࿈ܞ͠ͳ͕ΒɺνʔϜͷٕज़తϏδϣϯ΍໨ඪΛڞ༗ɾ਱ߦɻ • ಛ௃ɿෳࡶͳλεΫΛείʔϓͯ͠ௐ੔͠ɺνʔϜͷো֐Λഉ আɻίʔσΟϯάओಋ͔Βϝϯόʔ΁ͷҕৡ͕த৺ʹɻ
  11. 22 1-3. Staff Engineer ͷ 4ͭͷ "ΞʔΩλΠϓ" όΠφϦͰ͸ͳ͍ Solver 導

    築 解 補 Tech Lead νʔϜΛಋ͖ɺ ํ޲ੑΛࣔ͢ Architect ٕज़Λઃܭ͠ɺ ࢓૊ΈΛܗͮ͘Δ Right Hand ܦӦ૚Λิࠤ͠ɺ શମΛࢧ͑Δ ෳࡶͳ໰୊Λղ͖΄͙͢
  12. 23 1-3. Staff Engineer ͷ 4ͭͷ "ΞʔΩλΠϓ" 導 築 解

    補 όΠφϦͰ͸ͳ͍ Tech Lead νʔϜΛಋ͖ɺ ํ޲ੑΛࣔ͢ Architect ٕज़Λઃܭ͠ɺ ࢓૊ΈΛܗͮ͘Δ Right Hand ܦӦ૚Λิࠤ͠ɺ શମΛࢧ͑Δ Solver ෳࡶͳ໰୊Λղ͖΄͙͢ Ikuo ྫɿIkuo ݩͷνʔϜʹ࣠଍Λஔ͖ͭͭɺ ΑΓ޿͍Division/Department ʹӨڹͷ ͋Δ࢓૊Έͮ͘ΓΛ͍ͯ͠Δ • Πϯϑϥίετ෼ੳɾ࡟ݮͱΨόφϯε • ΦϒβʔόϏϦςΟͷ޲্ Etc…
  13. 24 1-3. Staff Engineer ͷ 4ͭͷ "ΞʔΩλΠϓ" 導 築 解

    補 όΠφϦͰ͸ͳ͍ Tech Lead νʔϜΛಋ͖ɺ ํ޲ੑΛࣔ͢ Architect ٕज़Λઃܭ͠ɺ ࢓૊ΈΛܗͮ͘Δ Right Hand ܦӦ૚Λิࠤ͠ɺ શମΛࢧ͑Δ Solver ෳࡶͳ໰୊Λղ͖΄͙͢ Ikuo Senior Staff A Senior Staff B Staff C ਂ͍υϝΠϯ஌ࣝͱ ໰୊ղܾೳྗ νʔϜʹਂ͍ಎ࡯
  14. 25 1-3. Staff Engineer ͷ 4ͭͷ "ΞʔΩλΠϓ" όΠφϦͰ͸ͳ͍ • ӨڹྗΛͲ͜ͰɺͲͷΑ͏ʹൃش͢Δ͔ͱ͍͏࿩

    • ྡΓ͋ͬͨΞʔΩλΠϓ͸ൃش͠΍͍͢ • Ͳ͏બͿ͔ʁ • ࢿ࣭΋͋Δ͕ɺܦݧ΋Өڹେ • ͍·ैࣄ͍ͯ͠ΔϓϩδΣΫτʹ΋ΑΔ͕… ICΩϟϦΞΛߟ͑Δ͏͑Ͱҙ͓ࣝͯ͘͠ͱྑ͍ ʢ͔΋ 導 築 解 補
  15. 26 1-3. Staff Engineer ͷ 4ͭͷ "ΞʔΩλΠϓ" IkuoྲྀɿΞʔΩλΠϓ “࣌ݟࣜ” —

    ࣌ؒͷ࢖͍ํ͸ʁ Staff Engineer — Staff archetypes Category / Archetype A. ࣮૷ɾݸਓ࡞ۀ B. ઃܭɾϨϏϡʔ C. ࣮ߦਪਐɾௐ੔ D. ૊৫ɾར֐ௐ੔ Tech Lead 20% 30% 35% 15% Architect 10% 50% 20% 20% Solver 55% 25% 10% 10% Right Hand 5% 10% 35% 50% • ࣮૷ɾݸਓ࡞ۀ ➡ ղ: Solver • ઃܭɾϨϏϡʔ ➡ ங: Architect • ૊৫ɾར֐ௐ੔ ➡ ิ: Right Hand • όϥϯε ➡ ಋ: Tech Lead ͬ͘͟ΓҰ൪ଟ͍࣌ؒͷ࢖͍ํ͕… Summarized by ChatGPT 5-thinking
  16. 29 2-1. جຊઓུ Promotion Packets — ঢਐܭըɾূ੻υΩϡϝϯτ • ࣗ෼ͷ࢓ࣄΛΞϐʔϧ͢ΔυΩϡϝϯτΛ४උ͢Δ •

    ͋ͳͨͷʢStaffʣϓϩδΣΫτ͸ʁ • ͲͷΑ͏ʹձࣾΛվળͨ͠ʁ • ͲΜͳΠϯύΫτʢ਺ࣈʣ͕͋ͬͨʁ • ୭Λࢦಋͨ͠ʁ • ࣗ෼ʹ଍Γͳ͍ٕೳ΍ߦಈΪϟοϓ΁ͷରԠ͸ʁ Staff Engineer — Promotion packets • “ࠓ” ϓϩϞʔγϣϯʹڵຯ͕ͳͯ͘΋ɺఆظతʹ࡞ͬͯߋ৽͢Δͷ͕͓͢͢Ί • ࠓͷϚωδϟʔΛר͖ࠐΈɺҰॹʹ࡞੒͢Δͷ͕͓͢͢Ί • ϚωδϟʔʹϓϩϞʔγϣϯ΁ͷҙཉΛ఻͑ɺڠྗΛڼ͙ ݏΒ͘͠ฉ͑͜Δ͔΋͠Εͳ͍͕ɺ ΩϟϦΞΞοϓʹ͓͍ͯࣗݾΞϐʔϧ͸௒ॏཁ
  17. 30 2-2. ࣮ྫɿIkuoͷ৔߹ ̏೥લɿνʔϜ Tech Lead / Managerͱͷ 1on1 …

    ͤ΍͔ͯ Ikuo… Ikuo ౰࣌ͷManager ࣗ෼ͷϓϩϞʔγϣϯʹ͸ڵຯͳ͍͔Βɺ νʔϜͷ͍͋ͭͱ͍͋ͭΛ͸΍͘ Senior ʹ͠Α͏
  18. 31 • ʮࣗ෼ͷ Promotion ʹ͸ڵຯ͕ͳ͍ʯ࣮ࡍʹͳ͔ͬͨ • લఏͱͯ͠ɺICͱͯ͠ੜ͖ΔͱܾΊ͍ͯͨ (2019 Blog:σϕϩούʔͱͯ͠ੜ͖͍ͯ͘) •

    څྉ͸े෼΋ΒͬͯΔ͠… ࠓͷ࢓ࣄ͸ָ͍͠͠… • ݁ՌΛग़ͯ͠Ε͹ͦͷ͏ͪධՁ͞ΕΔ͸ͣɺͦ͏ߟ͍͑ͯͨ • Senior ʹ্͕ͬͨͱ͖͕ͦ͏ͩͬͨ • Կ͕ى͔ͬͨ͜ʁ̏೥ؒ Senior Ͱ Stuck • Staff ΁ͷঢਐ͸উखʹ/ࣗಈͰ͸ਐ·ͳ͍ ̏೥લɿνʔϜ Tech Lead / Managerͱͷձ࿩… ঢਐ͚͕ͩશͯͰ͸ͳ͍͕ɺ (ಛʹStaff+΁ͷ)ΩϟϦΞΞοϓʹ͓͍ͯࣗݾΞϐʔϧ͸௒ॏཁ 2-2. ࣮ྫɿIkuoͷ৔߹
  19. 33 2-2. ࣮ྫɿIkuoͷ৔߹ There’s a will, There’s a way! Managerͷڠྗ͸ෆՄܽʂ

    (ࣗ෼ͷManager͕આಘͰ͖ͳ͍ͳΒɺ·ͩͦͷ࣌Ͱ͸ͳ͍ͷ͔΋ʁ 2೥લɿॻ੶ “Staff Engineer” ͱͷग़ձ͍ Ikuo ౰࣌ͷManager ͔͔͔͔͘͘͠͡Ͱɺ ΅͘΋Promotion໨ࢦ͍ͨ͠ʂ
  20. 34 • Promotion Packet(Self Assessment) • Manager ͱ͍ͬ͠ΐʹετʔϦʔΛߟ͑ɺSelf Assessmentʹ൓ө •

    ”Staff Project”: ঢ֨ͷ͖͔͚ͬͷϓϩδΣΫτ͸͋ͬͨʁ • Ikuoͷ৔߹: ΦϯϥΠϯ޿ࠂ഑৴γεςϜͷϦΞʔΩςΫνϟઃܭ • ݁Ռɿ̍೥͔͔ͬͨ(νϟϯε͸൒೥ʹ̍౓) • ͭ·Γ̍౓ Reject ͞Ε͍ͯΔɻظ଴͗͢͠ͳ͍ • ͕ͩٸ͗͗ͯ͢΋ྑ͘ͳ͔ͬͨͩΖ͏ • ͱ͖Λ͍͍ͩͨಉͯ͘͡͠ɺ”Staff Engineer” ͷλΠτϧ੍͕ఆ ̍೥લɿTry & Promotionʂ 2-2. ࣮ྫɿIkuoͷ৔߹ ࣗݾΞϐʔϧ͕(ry
  21. 35 • Promotion Packet(Self Assessment) • Manager ͱ͍ͬ͠ΐʹετʔϦʔΛߟ͑ɺSelf Assessmentʹ൓ө •

    ”Staff Project”: ঢ֨ͷ͖͔͚ͬͷϓϩδΣΫτ͸͋ͬͨʁ • Ikuoͷ৔߹: ΦϯϥΠϯ޿ࠂ഑৴γεςϜͷϦΞʔΩςΫνϟઃܭ • ݁Ռɿ̍೥͔͔ͬͨ(νϟϯε͸൒೥ʹ̍౓) • ͭ·Γ̍౓ Reject ͞Ε͍ͯΔɻظ଴͗͢͠ͳ͍ • ͕ͩٸ͗͗ͯ͢΋ྑ͘ͳ͔ͬͨͩΖ͏ • ͱ͖Λ͍͍ͩͨಉͯ͘͡͠ɺ”Staff Engineer” ͷλΠτϧ੍͕ఆ ̍೥લɿTry & Promotionʂ 2-2. ࣮ྫɿIkuoͷ৔߹ ϓϩϞʔγϣϯ΋ΩϟϦΞΞοϓ΋ खஈͰ͋ͬͯ໨తͰ͸ͳ͍ ͜Ε͔ΒԿΛ੒͔͢ʁ͕͍ͩ͡ ࣗݾΞϐʔϧ͕(ry
  22. 38 3-1. ࣌ؒͷ࢖͍ํ -- िؒεέδϡʔϧ Ikuoͷ͹͍͋ɿIkuoྲྀ ࣌ݟࣜ… Category Hours %

    A. ݸਓ࡞ۀ(࣮૷/෼ੳ) 5.0 22.2% B. ઃܭ/ϨϏϡʔ(ઃܭ/υΩϡϝϯτ/ϨϏϡʔ) 9.0 40.0% C. ਪਐɾӡ༻(Working Group/ӡ༻) 4.5 20.0% D. ૊৫ɾར֐ௐ੔(1on1/Ϧʔυ) 4.0 17.8% Category / Archetype A. B. C. D. ྨࣅ౓% Tech Lead 20% 30% 35% 15% 85.0% Architect 10% 50% 20% 20% 87.8% Solver 55% 25% 10% 10% 67.2% Right Hand 5% 10% 35% 50% 52.8% Ikuo Summarized by ChatGPT 5-thinking Similarity by ChatGPT 5-thinking
  23. 39 1-3: Ikuoྲྀ ΞʔΩλΠϓ࣌ݟࣜ A.ݸਓ࡞ۀ(࣮૷/෼ੳ) ~22% • σʔλ෼ੳ • ΍ΕΔΤϯδχΞ͕গͳ͍

    ˍ IkuoͷಘҙྖҬ • ઃܭ΍ϨϏϡʔ࣌ɺσʔλΛ൑அࡐྉͱͯ͠ఏڙ • ίʔσΟϯά • ׂ߹͸গͳ͍͕ɺखΛ཭͞ͳ͍Α͏ʹ͍ͯ͠Δ B.ઃܭ/ϨϏϡʔ ~40% • ίʔυϨϏϡʔɿґཔ͸ͳΔ΂͘࠷༏ઌ • ૊৫શମͷεϐʔυ/඼࣭ͷఈ্͛ • (ཪ໨త) ৴པஷۚͷ֫ಘ • ํ਑ࡦఆͷυΩϡϝϯτɺઃܭ • ٴͼͦΕΒͷϨϏϡʔ C.ਪਐɾӡ༻ ~20% • Department Working Group • ઌਐٕज़ͷௐࠪ,దԠ • ࠓ͸΋ͪΖΜAI/Agentic Coding • ࢓૊ΈΛ੔͑ΔΑΓ͸৘ใڞ༗͕ϝΠϯ D.૊৫ɾར֐ௐ੔ ~18% • 1on1 • Group಺ओཁϝϯόʔɿϝϯλʔ • ্࢘ɺάϧʔϓ಺ͷϚωδϟʔɿϝϯςΟʔ • ϦʔμʔγοϓMTG • ച্ਐḿ΍ઓུڞ༗ 3-2. ओͳ࢓ࣄ
  24. 42 ̍/3 νʔϜΛ཭ΕΔ • ΑΓ޿͍ྖҬ ΁ͷίϛοτ • ਂ͍ूத࣌ؒ Λ֬อ 🧭

    Why? 🛠 How? 🎯 So What? • νʔϜఆྫ(εΫ ϥϜΠϕϯτͳ Ͳ)͔Βଔۀ • νʔϜλεΫ௚ ΞαΠϯΛࢭΊ Δ • ࣗ෼ͷ࢓ࣄΛࣗ෼Ͱ ܾΊΔ • ࡋྔˢɺϓϨο γϟʔ↑ • ௚઀తʹνʔϜͷ࢓ ࣄʹख/ޱΛग़ͤΔ λΠϛϯά͕ݮͬͨ IC ͱͯ͠ಇ͖࢝Ί͔ͯΒॳɻେ͖ͳมԽͰָ͍͠ʂͦͯ͠େม… 3-3. ָ͠͞ɺ΍Γ͕͍ɺେม͞
  25. 44 • Opportunity/ SupportͰ͖Δͱ ͜ΖΛ୳͢ • ඞཁͳৄࡉΛ཈͑ ͭͭɺେہతͳ໨ ઢΛ࣋ͭ 🧭

    Why? 🛠 How? 🎯 So What? • ฒྻ౓Λ্͛ɺؔΘΔϓϩδΣΫ τͷ਺Λ૿΍͢ • ෯ͱਂ͞ͷ୳ࡧ༏ઌॱҐ • ઓུϨϕϧͷ၆ᛌ͔Βɺ࣮૷Ϩ ϕϧͷৄࡉ΁ • Ͳͷఔ౓ͷച্/γΣΞΛ͍ͭ ·Ͱʹʁ • →Ͳͷఔ౓࣌ؒΛ͔͚Δͷ͔ʁ ͍ͭ΍Δͷ͔ʁͲ͏΍Δͷ͔ʁ • ݱ৔Ͱٞ࿦ɾϨϏϡʔͰ͖ Δ࣮૷ΧϯΛอ࣋ͨ͠· ·ɺDivHeadϨϕϧͱձ࿩Ͱ ͖Δେہ؍ • ίϯςΩετεΠονͷ૿େ • ܇࿅ • AI࣌୅ͷ࢓ࣄͷ࢓ํͱ ΋Ϛον͍ͯ͠Δ? ઓུϨϕϧͷෆ࣮֬ੑͱ࣮૷ϨϕϧͱΛͭͳ͙ɻେม… ̎/3 େྔͷ৘ใΛॲཧ͢Δ 3-3. ָ͠͞ɺ΍Γ͕͍ɺେม͞
  26. 46 • “ҕ೚͞ΕͨݖݶͰӨڹ ྗΛൃش͢Δɻ” • ”AuthorityΛआΓΔ” ͸ ৗʹ͸ൃಈͰ͖ͳ͍ • ӨڹྗΛൃش͢Δͱ͖

    ͸ɺجຊࣗ෼ͷ৴པஷ ۚΛ࢖͏ 🧭 Why? 🛠 How? 🎯 So What? • ·ͣ૬खΛ৴པͤΑ • ࿩͸ͦΕ͔Βͩ • ઌʹGive • αϙʔτ/Πωʔϒ ϦϯάͰ৴པஷۚ Λ૿΍͢ • צҧ͍͔Βͷ୤٫ • ʮ୭΋๻ͷݴ͏͜ ͱʹฉࣖ͘Λ࣋ͨ ͳ͍…ʯ • ৴པ͕͋ͬͯͦ͜ɺ ΑΓେ͖ͳൣғΛಈ ͔ͤΔ ̏/3 ৴པ͕͢΂ͯʂ ͜ͷ͋ͱ঺հ͢Δࣦഊ͸΄ͱΜͲ͜Ε… 3-3. ָ͠͞ɺ΍Γ͕͍ɺେม͞
  27. 47 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̍/3 Ikuo νʔϜؒͰ࿩ܾͯ͠ΊΒΕͳ͍ͳΒɺ ΅͕͘ Group

    TL ͱܾͯ͠ΊΔΑʂ ന೤͢Δٞ࿦… XXX͕͍͍ઃܭͩ ͍΍ɺYYYͩ ….. …. 👊୭͕͓લΛGroup TLʹͨ͠ͷʁ 👊ͦΕɺνʔϜTL͕͍Δҙຯͳ͘ͳ͍ʁ
  28. 48 Ikuo νʔϜؒͰ࿩ܾͯ͠ΊΒΕͳ͍ͳΒɺ ΅͕͘ Group TL ͱܾͯ͠ΊΔΑʂ XXX͕͍͍ઃܭͩ ͍΍ɺYYYͩ …..

    …. 👊୭͕͓લΛGroup TLʹͨ͠ͷʁ 👊ͦΕɺνʔϜTL͕͍Δҙຯͳ͘ͳ͍ʁ ͝΋ͬͱ΋ʂʂ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̍/3
  29. 49 Ikuo νʔϜؒͰ࿩ܾͯ͠ΊΒΕͳ͍ͳΒɺ ΅͕͘ Group TL ͱܾͯ͠ΊΔΑʂ XXX͕͍͍ઃܭͩ ͍΍ɺYYYͩ …..

    …. 👊୭͕͓લΛGroup TLʹͨ͠ͷʁ 👊ͦΕɺνʔϜTL͕͍Δҙຯͳ͘ͳ͍ʁ ࣦഊ — ࣗ෼͕ܾΊΔ(͜ͱʹݻࣥ͢Δ) ԿނʁɿܾΊΔ͜ͱ͕࢓ࣄͱצҧ͍͍ͯͨ͠… ରԠɿఫճ → αϙʔτ͕ࣗ෼ͷத৺ۀ຿Ͱ͋Δ͜ͱΛ໌ࣔ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̍/3 ”๻͕ܾΊΔΑʂ”
  30. 50 Ikuo νʔϜؒͰ࿩ܾͯ͠ΊΒΕͳ͍ͳΒɺ ΅͕͘ Group TL ͱܾͯ͠ΊΔΑʂ XXX͕͍͍ઃܭͩ ͍΍ɺYYYͩ …..

    …. 👊୭͕͓લΛGroup TLʹͨ͠ͷʁ 👊ͦΕɺνʔϜTL͕͍Δҙຯͳ͘ͳ͍ʁ (ͳΓͨͯͷࠒͷ࿩͕ͩ) ΠΩ͍ͬͯͨɺͱ͔͠ݴ͍Α͏͕ͳ͍… 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̍/3 ”๻͕ܾΊΔΑʂ”
  31. 51 Ikuo ͪΐͬͱ·ͬͯɻ ͜͏͜͏͜͏͍͏ཧ༝ͰϠό͍Ͱ͢ɻ ࢲͷݖݶͰϦδΣΫτ͠·͢ A͕Αͦ͞͏ͩ ͦ͏ͩͶɺAͩ ….. …. Α͠ɺ͜ͷҊͰ͍͜͏ʂ

    👊ԿͷݖݶͩΑ… 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̎/3
  32. 52 Ikuo ͪΐͬͱ·ͬͯɻ ͜͏͜͏͜͏͍͏ཧ༝ͰϠό͍Ͱ͢ɻ ࢲͷݖݶͰϦδΣΫτ͠·͢ A͕Αͦ͞͏ͩ ͦ͏ͩͶɺAͩ ….. …. 👊ԿͷݖݶͩΑ…

    Α͠ɺ͜ͷҊͰ͍͜͏ʂ ͝΋ͬͱ΋śőőʂʂ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̎/3
  33. 53 Ikuo ͪΐͬͱ·ͬͯɻ ͜͏͜͏͜͏͍͏ཧ༝ͰϠό͍Ͱ͢ɻ ࢲͷݖݶͰϦδΣΫτ͠·͢ A͕Αͦ͞͏ͩ ͦ͏ͩͶɺAͩ ….. …. 👊ԿͷݖݶͩΑ…

    Α͠ɺ͜ͷҊͰ͍͜͏ʂ ࣦഊ — ϦδΣΫτ Կނʁ ɿݖݶͳͲແ͍… ରԠɿࣦഊΛڐ༰ ”͜Ε͸Ϡό͍” ͷᮢ஋ΛԼ͛Δɻ → ҙࢥܾఆͷڧ౓(ඇՄٯ౓ͱӨڹظؒ)Λ֬ೝ͠ɺܾఆΛαϙʔτ͢Δ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̎/3 ΞΠσΟΞͷϦδΣΫτ
  34. 54 Ikuo ݟͯݟͯʂ ϐοΧϐΧͷΨΠυϥΠϯΛ࡞ͬͨΑʂʂ ࠷ߴ͔ͩΒ͜ΕͰಇ͜͏ʂ ~~ ίϝϯτ ~~ ίϝϯτ ~~

    ίϝϯτ … … … 📁 📁 📁 📁 📁 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̏/3
  35. 55 Ikuo ݟͯݟͯʂ ϐοΧϐΧͷΨΠυϥΠϯΛ࡞ͬͨΑʂʂ ࠷ߴ͔ͩΒ͜ΕͰಇ͜͏ʂ ~~ ίϝϯτ ~~ ίϝϯτ ~~

    ίϝϯτ … … … 📁 📁 📁 📁 📁 ແʂʂ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̏/3
  36. 56 Ikuo ݟͯݟͯʂ ϐοΧϐΧͷΨΠυϥΠϯΛ࡞ͬͨΑʂʂ ࠷ߴ͔ͩΒ͜ΕͰಇ͜͏ʂ ~~ ίϝϯτ ~~ ίϝϯτ ~~

    ίϝϯτ … … … 📁 📁 📁 📁 📁 ࣦഊ — ಠΓΑ͕Γ Կނʁɿ”पғΛר͖ࠐΜͰ” Өڹ ରԠɿ෧ҹ → ੍ఆ͔࣌ΒओཁϝϯόʔΛר͖ࠐΉ ͍͔ʹਓΛר͖ࠐΉ͔ɺ͕࢓ࣄͷΩϞ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍͔͘ͳ͔ͬͨ͜ͱ — ̏/3 ಠΓΑ͕ΓΨΠυϥΠϯ
  37. 57 Ikuo ͪΐͬͱ·ͬͯɻ ͜͏͜͏͜͏͍͏ཧ༝ͰϠό͍Ͱ͢ɻ ࢲͷݖݶͰ(ry A͕Αͦ͞͏ͩ ͦ͏ͩͶɺAͩ ….. …. Α͠ɺ͜ͷҊͰ͍͜͏ʂ

    σʔλ͕ 10 ഒʹͳͬͯ΋଱͑ΒΕΔ ΞʔΩςΫνϟΛ࡞ΔͧʂPJ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍ͬͨ͘͜ͱ — ̍/2
  38. 58 Ikuo ͪΐͬͱ·ͬͯɻ ͜͏͜͏͜͏͍͏ཧ༝ͰϠό͍Ͱ͢ɻ ࢲͷݖݶͰ(ry A͕Αͦ͞͏ͩ ͦ͏ͩͶɺAͩ ….. …. Α͠ɺ͜ͷҊͰ͍͜͏ʂ

    σʔλ͕ 10 ഒʹͳͬͯ΋଱͑ΒΕΔ ΞʔΩςΫνϟΛ࡞ΔͧʂPJ Ͱ͸ͳ͍ʂʂ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍ͬͨ͘͜ͱ — ̍/2
  39. 59 Ikuo ͳΔ΄Ͳ௅ઓతͩͶʂ ͱ͜ΖͰɺ͍ͭ·Ͱʹ10ഒʹ଱͑ΒΕΔΑ͏ʹ ͳΕ͹͍͍ΜͩΖ͏ʁ ͲΕ͘Β͍͕࣌ؒ࢖͑ͦ͏ʁ A͕Αͦ͞͏ͩ ͦ͏ͩͶɺAͩ ….. ….

    Α͠ɺ͜ͷҊͰ͍͜͏ʂ σʔλ͕ 10 ഒʹͳͬͯ΋଱͑ΒΕΔ ΞʔΩςΫνϟΛ࡞ΔͧʂPJ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍ͬͨ͘͜ͱ — ̍/2
  40. 60 Ikuo ͳΔ΄Ͳ௅ઓతͩͶʂ ͱ͜ΖͰɺ͍ͭ·Ͱʹ10ഒʹ଱͑ΒΕΔΑ͏ʹ ͳΕ͹͍͍ΜͩΖ͏ʁ ͲΕ͘Β͍͕࣌ؒ࢖͑ͦ͏ʁ A͕Αͦ͞͏ͩ ͦ͏ͩͶɺAͩ ….. ….

    Α͠ɺ͜ͷҊͰ͍͜͏ʂ ޿ࠂ͕ 10 ഒʹͳͬͯ΋଱͑ΒΕΔ ΞʔΩςΫνϟΛ࡞ΔͧʂPJ 👍 ໰͍ΛཱͯΔ ϝϯόʔ͸ࢦࣔ͞Εͳͯ͘ϋοϐʔ Ikuo͸৴པஷۚΛͨΊͭͭ੒௕͕ݟΕͯϋοϐʔ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍ͬͨ͘͜ͱ — ̍/2 ࢦࣔΑΓ໰͍
  41. 61 Infra Alert, Incident Inquiry Team ػೳ࣮૷ɺΠϯϑϥɺίετ࡟ݮ ͞·͟·ͳґཔ͕෣͍ࠐΉνʔϜ… …PBL͕௕େԽɺ Lead

    Time ͕௕͘ͳΓ͕ͪ 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍ͬͨ͘͜ͱ —̎/2
  42. 63 Infra Inquiry 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍ͬͨ͘͜ͱ —̎/2 Alert, Incident Team

    ΩϡʔʹೖΔલʹ ଧͪฦ͢ Ikuo 👍 Πϯλʔηϓτ ґཔओ͸ૣ͘࢓ࣄ͕ऴΘͬͯϋοϐʔ νʔϜ͸Πϯλϥϓτ͕ݮͬͯϋοϐʔ(Invisible͕ͩ… Ikuo ͸खΛಈ͔͢ޱ࣮͕Ͱ͖ͯϋοϐʔ
  43. 64 Infra Inquiry 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ͏·͍ͬͨ͘͜ͱ —̎/2 Alert, Incident Team

    ΩϡʔʹೖΔલʹ ଧͪฦ͢ Ikuo ͨͩ͠ɿ όϥϯεΛऔΒͳ͍ͱແݶࡶ༻ฤʹ…
  44. 65 3-4. ࣄྫɿ͏·͍ͬͨ͘͜ͱɺ͍͔ͳ͔ͬͨ͜ͱ ڞ௨͢Δ՝୊ͱֶͼ ՝୊ɿ ➡ܾఆݖ͕͋Δ͔Α͏ͳৼΔ෣͍͸൓ൃΛੜΉ͚ͩ ✓ͦ΋ͦ΋ Staff+ ໾৬ʹ Authority

    ͸ͳ͍ ✓৴པஷۚͰ࢓ࣄΛ͍ͯ͠Δ͜ͱΛ๨Εͯ͸ͳΒͳ͍ Lesson Learnt: 1. Title ΍आΓ෺ͷ Authority ΛཔΔͳɻ৴པΛಘΑɻ 2. ϦδΣΫτ͢ΔͳɻαϙʔτͤΑɻ 3. ࣗ෼͕ܾΊΔඞཁ͸ͳ͍ɻΑΓྑ͍ܾఆ΁ಋ͚ɻ “Authority͕ͳ͍”͜ͱΛड͚ೖΕ͔ͯΒɺ ৺ཧతෛՙ΋͍ͩͿݮͬͨ
  45. 67 4-1. AIʹΑΔมԽͱ Job Security Q. ͜Ε͔Β Staff + ͸Ͳ͏ͳΔͱࢥ͍·͔͢ʁ

    Ұ൪੣࣮ͳଶ౓… Ͱ͕͢ɺࠓ೔͸ٞ࿦Λ͠ʹདྷ·ͨ͠ A. Θ͔Βͳ͍ ~ ऴ ~ ͱMartin Fowler ͕ݴ͍ͬͯΔ (஫ɿLLMͱιϑτ΢ΣΞ։ൃʹؔ͢Δߟ࡯)
  46. 68 4-1. AIʹΑΔมԽͱ Job Security ௕ظ (10೥~) ୹ظ (਺೔) (਺ϲ݄~൒೥)

    (Ұ೥~਺೥) ϛΫϩ ϚΫϩ ੈքܦࡁ Staff+ IC IT Software Engineer ೔ຊܦࡁ ࠓ೔ͷٞ࿦ͷ࿮૊Έ ࠓͷࣗ෼ͷ ϙδγϣϯ ௕ظ 㲗 ୹ظ ϚΫϩ 㲗 ϛΫϩ ͷ̐৅ݶͰߟ͑Δ
  47. 69 4-1. AIʹΑΔมԽͱ Job Security ௕ظ (10೥~) ୹ظ (਺೔) (਺ϲ݄~൒೥)

    (Ұ೥~਺೥) ϛΫϩ ϚΫϩ ੈքܦࡁ ࠓͷࣗ෼ͷ ϙδγϣϯ Staff+ IC IT Software Engineer ೔ຊܦࡁ ྺ࢙తࣄ࣮΍ ܦࡁֶ Input Input ࠓ೔ͷٞ࿦ͷ࿮૊Έ IC, Staff + ͷ ਺೥εύϯͷมԽ ͜ͷ΁ΜΛਪଌɾٞ࿦͍ͨ͠ ܦݧͱมԽͷ؍ଌ ٴͼͦͷඍ෼
  48. 70 4-1. AIʹΑΔมԽͱ Job Security ௕ظxϚΫϩ — λεΫཧ࿦ Acemoglu, D.,

    & Restrepo, P. (2019). "Automation and New Tasks" • ࢓ࣄ = “λεΫͷଋ” • ࢿຊ(ػց,AI) ͕࣮ߦՄೳͳλεΫ — Ұൠతʹఆܕ(Routine) • ࿑ಇऀ͕ൺֱత༏ҐΛ࣋ͭλεΫ — Ұൠతʹ൱ఆܗ(Non-Routine) • “ٕज़ਐา” ͷ࿑ಇधཁ΁ͷӨڹ — ࢿຊͱ࿑ಇऀͷλεΫ෼഑ͷมԽ • ࣗಈԽ(Automation) ᶃ ੜ࢈ੑޮՌʢProductivity Effectʣ • λεΫͷࣗಈԽʹΑΔੜ࢈ੑ޲্ɻ࿑ಇधཁͷؔઅత૿Ճ • Ձ֨௿Լˠधཁ૿Ճˠੜ࢈֦େˠิ׬తλεΫͷधཁ૿Ճ ᶄ ஔ׵ޮՌʢDisplacement Effectʣ • λεΫͷࣗಈԽʹΑΔ࿑ಇधཁͷ௚઀తݮগ • ৽λεΫͷ૑ग़(Creation of New Tasks) ᶅ ෮ؼޮՌʢReinstatement Effectʣ • ࿑ಇऀ͕ൺֱత༏ҐΛ࣋ͭ৽͍͠λεΫͷ૑ग़ɻ࿑ಇधཁͷ௚઀త૿Ճ
  49. 4-1. AIʹΑΔมԽͱ Job Security ௕ظxϚΫϩ — 1947-87 ίϯϐϡʔλීٴ ஔ׵ ෮ؼ

    ෮ؼ ʔ ஔ׵ ɹ ௞ۚ૯ֹ ੜ࢈ੑ ෮ؼͱஔ׵͕όϥϯε ੜ࢈ੑͷ޲্ʹ൐͍ ௞ۚ૯ֹ޲্ ෮ؼ(λεΫ૑ग़)ͷྫ ίϯϐϡʔλͷීٴʹ൐͍ɺ ϓϩάϥϚͱ͍͏৽ͨͳ࢓ࣄ͕૑ग़ Y࣠:ݪ఺͔Βͷྦྷੵ஋ e.g. 47-87೥Ͱ20%ஔ׵(࿑ಇݮগ
  50. 4-1. AIʹΑΔมԽͱ Job Security ஔ׵ ෮ؼ ෮ؼ ʔ ஔ׵ ɹ

    ௞ۚ૯ֹ ੜ࢈ੑ Ұ؏ͯ͠ஔ׵͕༏Ґ ௕ظxϚΫϩ — ྫɿ1987 - 2017 ~ ϩϘοτ, ιϑτ΢ΣΞԽ ෮ؼ - ஔ׵ͷဃ཭͕େ͖͍ͱ ੜ࢈ੑ্͕͕ͬͯ΋ ௞ۚ૯ֹ͕ఀ଺
  51. 4-1. AIʹΑΔมԽͱ Job Security ஔ׵ ෮ؼ ෮ؼ - ஔ׵ ɹ

    ௞ۚ૯ֹ ੜ࢈ੑ Ұ؏ͯ͠ஔ׵͕༏Ґ ੜ࢈ੑ্͕͕ͬͯ΋ ௞ۚ૯ֹ͕ఀ଺ ࣗಈԽͷՃ଎ʹΑΓஔ׵-෮ؼͷόϥϯε่͕ΕΔͱ ࿑ಇऀͷऔΓ෼͕খ͘͞ͳΔ ௿௞ۚԽɺ͋Δ͍͸ޏ༻ࣗମͷ૕ࣦ ௕ظxϚΫϩ — ྫɿ1987 - 2017 ~ ϩϘοτ, ιϑτ΢ΣΞԽ
  52. 4-1. AIʹΑΔมԽͱ Job Security ௕ظxϚΫϩ — λεΫཧ࿦ʹΑΔAIͷӨڹ༧ଌ 1.GPTs are GPTsʢEloundou+

    2023ʣ • ถࠃۀछͷ໿80%͕ۀ຿ͷ10%Ҏ্ͰӨڹ(࿐ग़/Exposure … 50%ͷ࣌ؒͰ׬) • LLM୯ମ(α)ͰશλεΫͷ≈15%͕“ಉ඼࣭Ͱߴ଎Խ”ɺLLM+(γ)ͳΒ≈47–56% • ߴ௞ۚ৬΄Ͳ࿐ग़͕ߴ͍܏޲ 2.The Simple Macroeconomics of AIʢAcemoglu 2024ʣ • TFP(Total Factor Productivity) +0.71% ্ݶ10೥/ݶఆతͳӨڹ • ࿐ग़཰͸ߴ͍͕ɺ࿐ग़λεΫͷGDPൺ͕௿͍(4.6%)ͨΊ • ฏۉ௞ۚӨڹ +1.01%ʢ10೥ʣɺࢿຊ෼഑཰͸֦େ • αϒάϧʔϓ͝ͱͰ͸ϚΠφεɺ࠷େ -0.7% • ࿐ग़౓͸ߴ͍͕ɺGDPൺ͕খ͍͞(ྔ͕গͳ͍)ͨΊܰඍͳ༧ଌ 80%ͷۀछ͕10%Ҏ্࿐ग़ 0.8 0.1
  53. 75 4-1. AIʹΑΔมԽͱ Job Security ௕ظxϚΫϩ — Key Takeaway 1.

    λεΫཧ࿦͕ڭ͑Δٕज़มԽͷϝΧχζϜ • ٕज़ਐาͷೋ໘ੑɿλεΫͷࣗಈԽʢஔ׵ʣͱ৽λεΫͷ૑ग़ʢ෮ؼʣ • ॏཁͳͷ͸ஔ׵ͱ෮ؼͷόϥϯε 2. ྺ࢙͕ࣔ͢ܯࠂͱر๬ • 1947-87೥ɿஔ׵ͱ෮ؼͷόϥϯε → ੜ࢈ੑͱ௞ۚͷಉ࣌੒௕ • 1987-2017೥ɿஔ׵Ճ଎ɾ෮ؼݮ଎ → ௞ۚ੒௕ͷఀ଺ • ڭ܇ɿόϥϯε͸ࣗಈతʹ͸อূ͞Εͳ͍ɺҙࣝతͳ౒ྗ(e.g ੓࣏తհೖ)͕ඞཁ 3. AI࣌୅΁ͷ࣮ફతؚҙ — λεΫཧ࿦ʹΑΔ༧ଌ • ৬ۀʹΑͬͯҟͳΔAI࿐ग़౓ʢExposure — AIஔ׵ՄೳͳλεΫͷ౓߹͍ʣ • → AIʹΑΔӨڹ౓߹͍ͷෆۉҰੑ • ϚΫϩͰ͸࿐ग़λεΫͷGDPγΣΞͷ௿͔͞ΒɺӨڹ͸ݶఆతͱ͍͏༧ଌ
  54. 76 4-1. AIʹΑΔมԽͱ Job Security ୹ظxϛΫϩ — “ඍ෼” ᶃ ओ؍ʹΑΔมԽ؍ଌ

    Apr May June July Aug 2025 Mar IntelliJ + Copilot ChatGPT (ίϐϖ) खಈ࣌୅ Ikuo : AI ~ 80 : 20 Cursor AI Agent ࣌୅ Ikuo : AI ~ 50 : 50 Claude Code Agentic Coding ࣌୅ Ikuo : AI ~ 10 : 90 ΋͸΍खͰ ίʔυΛॻ͘͜ͱ͸ ΄ͱΜͲͳ͍ ݸਓతͳ ඇ࿈ଓ͔ͭ ഁյతมԽ
  55. 77 4-1. AIʹΑΔมԽͱ Job Security ୹ظxϛΫϩ — “ඍ෼” ᶄ٬؍తࢦඪͷਐḿ •

    LLM Coding Benchmarks • SWE-bench Verified — Ref • ࣮ࡏGitHubϦϙͷIssueΛ“ࣗ཯Ͱमਖ਼ͯ͠શςετΛ௨͢”ೳྗ • SWE-Bench͔Βղͷ࿐ग़ɺऑ͍ςετɺֶशσʔλԚછΛऔΓআ͍ͨ500݅αϒηοτ • LCB(LiveCodeBench) — Ref • ڝϓϩʢLeetCode / AtCoder / Codeforcesʣͷ৽ن໰୊Λܧଓऩू͠ɺԚછճආΛॏࢹ ͨ͠ίʔυೳྗϕϯν • pass@1 — Ұճͷग़ྗͷΈͰධՁ • GSO(Global Software Optimization) — Ref • LLM Agent ͷੑೳΛධՁ͢Δൺֱత৽͍͠ϕϯν • ࣮ϓϩδΣΫτͷίϛοτཤྺ͔Βநग़ͨ͠102λεΫ/10ίʔυϕʔεͰɺ଎౓࠷దԽ ύονΛࣗಈੜ੒ • ਓؒΤΩεύʔτͷ଎౓޲্ʢ≥95%ʣͱਖ਼͠͞Ͱ൑ఆ(OPT@1)
  56. 78 4-1. AIʹΑΔมԽͱ Job Security * Model ൃද೔ʹ֤ϕϯνείΞΛϓϩοτ * ಉ೔ʹෳ਺͋Δ΋ͷ͸TopͷΈ

    σʔλιʔε ୹ظxϛΫϩ — “ඍ෼” ᶄ٬؍తࢦඪͷਐḿ SWE-bench Verified — Ref LCB(LiveCodeBench) — Ref GSO(Global Software Optimization) — Ref Apr May June July Aug 2025 Mar 2024 Nov
  57. 79 4-1. AIʹΑΔมԽͱ Job Security 2024.11 ~ 2025.4 ʹ େ͖ͳਐḿ

    Agentic Coding͕࣮༻Ϩϕϧ ʹୡͨ͠ͷ΋͓ͦΒ͘͜ͷࠒ σʔλιʔε ୹ظxϛΫϩ — “ඍ෼” ᶄ٬؍తࢦඪͷਐḿ Apr May June July Aug 2025 Mar 2024 Nov * Model ൃද೔ʹ֤ϕϯνείΞΛϓϩοτ * ಉ೔ʹෳ਺͋Δ΋ͷ͸TopͷΈ
  58. 80 4-1. AIʹΑΔมԽͱ Job Security * Model ൃද೔ʹ֤ϕϯνείΞΛϓϩοτ * ಉ೔ʹෳ਺͋Δ΋ͷ͸TopͷΈ

    2024.11 ~ 2025.4 ʹ େ͖ͳਐḿ Agentic Coding͕࣮༻Ϩϕϧ ʹୡͨ͠ͷ΋͓ͦΒ͘͜ͷࠒ SWE-bench Verified 75% (͓ͦΒ͘·ͩσʔληοτͷ ໰୊΋͋Γͦ͏͕ͩ…) ΑΓෳࡶͳbenchͰ͸ ·ͩ·ͩ৳ͼ͍ͯΔ σʔλιʔε ௚ۙ ͜ΕΒͷbench͸ανΔஹީ (͢Ͱʹे෼ߴ͍) ୹ظxϛΫϩ — “ඍ෼” ᶄ٬؍తࢦඪͷਐḿ Apr May June July Aug 2025 Mar 2024 Nov
  59. 81 4-1. AIʹΑΔมԽͱ Job Security ୹ظxϛΫϩ — ॴײ • SWE-Bench

    Verified 75% ͷҙຯ͢Δͱ͜Ζ • 75% ͷ Github Issue ΛAI୯ಠͰղܾՄೳ • ୺తʹݴͬͯɺ͢Ͱʹେ఍ͷδϡχΞΑΓ΋༏ल ίʔσΟϯά͚ͩͳΒ΅͘ΑΓ… • ෳࡶ͔ͭن໛ͷେ͖͍໰୊͸·ͩۤखɺ͕ͩ… • ओͳϘτϧωοΫ͸ Context Window ͱ૝૾͞ΕΔ͕ɺ֦େ͍ͯ͠Δ • e.g. claude-sonnet-4-20250514[1m] … ~30K/LOC, 100files? microservice·Δ·Δऩ·Δ • ৽ػೳͷ࣮૷Ͱ͋Ζ͏ͱɺଟ͘͸طଘͷιϦϡʔγϣϯͷ૊Έ߹Θͤ • ໰୊Λখ͘͞ఆٛ͠ɺਖ਼֬ʹ΍Γ͍ͨ͜ͱΛݴޠԽ͢Δೳྗ͕ΩϞ Coding ͦͷ΋ͷ͸͢ͰʹAIͰ΄΅(70%Ҏ্?)୅ସՄೳ ※ ͞Εͨɺͱ͸ݴͬͯͳ͍ɻυϝΠϯʹΑͬͯ΋ҧ͏͠ɺAdoption Rate ͸ ~50%ఔ౓ Ref
  60. 82 4-1. AIʹΑΔมԽͱ Job Security ୹ظxϛΫϩ — “࣌ݟࣜ” ͰݟΔAI୅ସ A.

    ݸਓ࡞ۀ(࣮૷/෼ੳ) ~22% • [Routine/Non-routine] σʔλ෼ੳ — ख๏/σʔλॲཧ͸ஔ͖׵͑ΒΕ͕ͨղऍ͸ࠓͷͱ͜ਓؒ • [Routine] ίʔσΟϯά — 90% Ҏ্ஔ͖׵͑ B. ઃܭ/ϨϏϡʔ ~40% • [Routine] ίʔυ/υΩϡϝϯτϨϏϡʔ — ͍·ͷͱ͜Ζஔ͖׵͑50%ҎԼɺิॿతɻ͕ͩਐΈͦ͏ • [Non-routine] ΞʔΩςΫτɾઃܭ — ͍·ͷͱ͜Ζิॿతɻ C. ਪਐɾӡ༻ ~20% • [Non-routine] ਪਐWG — ઓུͱਓؒͷ૬ख͕த৺ɻਓؒ • [Non-routine] ઌਐٕज़ͷௐࠪ,దԠ — AIͷదԠͷAI୅ସ 🤔 ਓؒ D. ૊৫ɾར֐ௐ੔ ~18% • [Non-routine] 1on1 — ࠷΋ஔ͖׵͕͑஗ͦ͏ • [Non-routine] Ϧʔμʔγοϓઓུ — ઓུࡦఆɾܾఆ͸ࠓͷͱ͜ਓؒ 20 ~ 30% ఔ౓ͷλεΫஔ׵཰ ※ ࣌ؒͱੜ࢈͕ൺྫ͢Δ༁Ͱ͸ͳ͍͕…
  61. 83 4-1. AIʹΑΔมԽͱ Job Security ୹ظxϛΫϩ — “࣌ݟࣜ” ͰݟΔAI୅ସ A.

    ݸਓ࡞ۀ(࣮૷/෼ੳ) ~22% • [Routine/Non-routine] σʔλ෼ੳ — ख๏/σʔλॲཧ͸ஔ͖׵͑ΒΕ͕ͨղऍ͸ࠓͷͱ͜ਓؒ • [Routine] ίʔσΟϯά — 90% Ҏ্ஔ͖׵͑ B. ઃܭ/ϨϏϡʔ ~40% • [Routine] ίʔυ/υΩϡϝϯτϨϏϡʔ — ͍·ͷͱ͜Ζஔ͖׵͑50%ҎԼɺิॿతɻ͕ͩਐΈͦ͏ • [Non-routine] ΞʔΩςΫτɾઃܭ — ͍·ͷͱ͜Ζิॿతɻ C. ਪਐɾӡ༻ ~20% • [Non-routine] ਪਐWG — ઓུͱਓؒͷ૬ख͕த৺ɻਓؒ • [Non-routine] ઌਐٕज़ͷௐࠪ,దԠ — AIͷదԠͷAI୅ସ 🤔 ਓؒ D. ૊৫ɾར֐ௐ੔ ~18% • [Non-routine] 1on1 — ࠷΋ஔ͖׵͕͑஗ͦ͏ • [Non-routine] Ϧʔμʔγοϓઓུ — ઓུࡦఆɾܾఆ͸ࠓͷͱ͜ਓؒ ͔ͭɺஔ͖׵͑ΒΕͨ࣌ؒ͸ଞͷ࢓ࣄͰิర͞Ε͍ͯΔ Claude Codeͷग़ྗ଴ͭؒΨϯϓϥ࡞Ζɺͱ͸ͳΒͳ͍…😭 ͳΜͰʁδΣϰΥϯζͷύϥυοΫεʁ 20 ~ 30% ఔ౓ͷλεΫஔ׵཰ ※ ࣌ؒͱੜ࢈͕ൺྫ͢Δ༁Ͱ͸ͳ͍͕…
  62. 84 4-1. AIʹΑΔมԽͱ Job Security ୹ظxϛΫϩ — “࣌ݟࣜ” ͰݟΔAI୅ସ A.

    ݸਓ࡞ۀ(࣮૷/෼ੳ) ~22% • [Routine/Non-routine] σʔλ෼ੳ — ख๏/σʔλॲཧ͸ஔ͖׵͑ΒΕ͕ͨղऍ͸ࠓͷͱ͜ਓؒ • [Routine] ίʔσΟϯά — 90% Ҏ্ஔ͖׵͑ B. ઃܭ/ϨϏϡʔ ~40% • [Routine] ίʔυ/υΩϡϝϯτϨϏϡʔ — ͍·ͷͱ͜Ζஔ͖׵͑50%ҎԼɺิॿతɻ͕ͩਐΈͦ͏ • [Non-routine] ΞʔΩςΫτɾઃܭ — ͍·ͷͱ͜Ζิॿతɻ C. ਪਐɾӡ༻ ~20% • [Non-routine] ਪਐWG — ઓུͱਓؒͷ૬ख͕த৺ɻਓؒ • [Non-routine] ઌਐٕज़ͷௐࠪ,దԠ — AIͷదԠͷAI୅ସ 🤔 ਓؒ D. ૊৫ɾར֐ௐ੔ ~18% • [Non-routine] 1on1 — ࠷΋ஔ͖׵͕͑஗ͦ͏ • [Non-routine] Ϧʔμʔγοϓઓུ — ઓུࡦఆɾܾఆ͸ࠓͷͱ͜ਓؒ ൒೥ఔ౓ͷ࣌ؒ࣠Ͱ Staff+ͷAI୅ସΛ৺഑͢Δඞཁ͸ͳͦ͞͏ 20 ~ 30% ఔ౓ͷλεΫஔ׵཰ ※ ࣌ؒͱੜ࢈͕ൺྫ͢Δ༁Ͱ͸ͳ͍͕…
  63. 85 4-1. AIʹΑΔมԽͱ Job Security ͨͩ͠… (ੜ࢈ੑɿ୯Ґ࣌ؒ͋ͨΓͷ”ੜ࢈ྔ=Ξ΢τϓοτ”ͱҰ୴ஔ͍ͯ) ᶃ: “ੜ࢈ੑ” ͷ֨ࠩ͸޿͕Δ͹͔Γɻ

    Junior or Senior Ͱ͸ͳ͘ɺ AI or Non-AI ͕෼ਫྮ ʹΞοϓσʔτ͠ଓ͚Δඞཁ͋Γ ᶄ: ඍ෼ʹΑΔ༧ଌ͸ඇ࿈ଓͳมԽʹ੬ऑɻ ͭͶʹ࠷৽ͷಈ޲Λ؍ଌ͢Δ
  64. 86 4-2. ࠓޙͷ໾ׂมԽ த௕ظ x ϛΫϩɿStaff +΁ͷӨڹ༧ଌ — ̏ͭͷγφϦΦ ൵؍γφϦΦ

    — ஔ׵ >>> ෮ؼ த༱γφϦΦ — ஔ׵ > ෮ؼ ָ؍γφϦΦ — ஔ׵ ≦ ෮ؼ
  65. 87 4-2. ࠓޙͷ໾ׂมԽ ൵؍ — ”ஔ׵ͷ೾”ɿ༧ଌൃੜ཰ 20-25% ϙδγϣϯ60-70%ݮɻAI ͷΦʔέετϨʔγϣϯͱϏδωεదԠ͕ϝΠϯ த༱

    — “νʔϜͻͱΓ”ɿ༧ଌൃੜ཰ 45-50% ϙδγϣϯ20-30%ݮɻAIͰੜ࢈ੑ̏~̐ഒɺҰਓͰ̍ͭͷνʔϜฒͷग़ྗ ָ؍ — “৽ͨͳ൶”ɿ༧ଌൃੜ཰ 20-30% ϙδγϣϯ૿ɻϓϩδΣΫτ૿Ͱधཁ૿ɺ৽ͨͳઐ໳ྖҬͰ໾ׂ֦େ த௕ظ x ϛΫϩɿStaff +΁ͷӨڹ༧ଌ — ̏ͭͷγφϦΦ
  66. 88 4-2. ࠓޙͷ໾ׂมԽ ൵؍ — ”ஔ׵ͷ೾”ɿ༧ଌൃੜ཰ 20-25% ϙδγϣϯ60-70%ݮɻAI ͷΦʔέετϨʔγϣϯͱϏδωεదԠ͕ϝΠϯ த༱

    — “νʔϜͻͱΓ”ɿ༧ଌൃੜ཰ 45-50% ϙδγϣϯ20-30%ݮɻAIͰੜ࢈ੑ̏~̐ഒɺҰਓͰ̍ͭͷνʔϜฒͷग़ྗ ָ؍ — “৽ͨͳ൶”ɿ༧ଌൃੜ཰ 20-30% ϙδγϣϯ૿ɻϓϩδΣΫτ૿Ͱधཁ૿ɺ৽ͨͳઐ໳ྖҬͰ໾ׂ֦େ Staff+ ͷຊ࣭͸ෆ࣮֬ੑͷ؅ཧͱ૑଄తͳ໰୊ղܾ χϯήϯͷྖ෼ͱͯ͠࢒Γ΍͍͢(ͩΖ͏… த௕ظ x ϛΫϩɿStaff +΁ͷӨڹ༧ଌ — ̏ͭͷγφϦΦ
  67. 89 4-2. ࠓޙͷ໾ׂมԽ • ൵؍తʢஔ׵ޮՌʼ෮ؼޮՌʣ/ ஔ׵཰50%, ൃੜ֬཰20-25% • AI ͕ίʔυϕʔεશମΛཧղ͠ɺΞʔΩςΫνϟϨϕϧͷҙࢥܾఆ·Ͱࢧԉ

    • ඞཁਓ਺͸ݱࡏͷ30-40%·Ͱݮগ͠ɺٕज़຋༁ऀతͳੑ࣭͕ڧ·Δ • AI ͷΦʔέετϨʔγϣϯ͓ΑͼϏδωεదԠ͕ओཁλεΫ • த༱ʢ෦෼తόϥϯεʣ/ ஔ׵཰40%, ൃੜ֬཰45-50% • AI͸ڧྗͳิॿπʔϧͱͯ͠ػೳɺਓؒͷ൑அͱ૑଄ੑ͕ґવͱͯ͠த֩తՁ஋ • ੜ࢈ੑ͕2-3ഒ޲্͠ɺҰਓͰैདྷͷ3-4ਓ෼ͷٕज़తӨڹྗΛൃش • ૯਺͸20-30%ݮগ͢Δ͕ɺ࢒ͬͨ໾ׂͷॏཁੑͱใु͸େ෯ʹ૿େ • ָ؍తʢஔ׵ޮՌ ≦ ෮ؼޮՌʣ/ ஔ׵཰30%, ൃੜ֬཰20-30% • AI͕৽ͨͳՄೳੑΛ։͖ɺ͜Ε·Ͱٕज़తʹෆՄೳͩͬͨϓϩδΣΫτ͕࣮ݱՄೳʹ • AIڠௐΞʔΩςΫτͳͲ৽ઐ໳ྖҬ͕ੜ·Εɺ໾ׂ͕֦େ • ҟྖҬͷڮ౉͠ͱෆ࣮֬ੑ؅ཧ͕ɺAI࣌୅ͷத֩తՁ஋ͱཱͯ֬͠ Staff+ ͷຊ࣭͸ෆ࣮֬ੑͷ؅ཧͱ૑଄తͳ໰୊ղܾ χϯήϯͷྖ෼ͱͯ͠࢒Γ΍͍͢(ͩΖ͏… Ծఆɿ • ݱࡏஔ׵཰ 20% • ೥ؒ੒௕཰ • ൵؍: 50% • த༱: 30% • ఍߅܎਺: 0.6 • Ծʹೳྗతʹஔ׵Ͱ͖ͯ΋ɺ 60%͸౉͞ͳ͍બ୒Λ͢Δ By Claude Opus 4.1 த௕ظ x ϛΫϩɿStaff +΁ͷӨڹ༧ଌ — ৄࡉ
  68. 90 5. InnovatorʢΠϊϕʔλʔʣ 6. OrchestratorʢΦʔέετϨʔλʔʣ ໾ׂɿ • AIͷՄೳੑΛϢʔβʔՁ஋ʹม׵͠ɺֵ৽తͳ ੡඼ػೳΛઃܭ •

    ػցֶशͷಛੑΛਂ͘ཧղ͠ɺϏδωεΰʔϧ ͱٕज़ͷՍ͚ڮͱͳΔ ಛ௃ɿ • ϢʔβʔͷજࡏχʔζΛൃݟͯ͠AIͰղܾࡦΛ ૑ग़ • ϓϩτλΠϐϯά͔Βຊ൪ಋೖ·ͰɺAIػೳͷ ඼࣭ͱUXΛ୲อ • ࢢ৔τϨϯυͱAIٕज़ͷਐԽΛৗʹ೺Ѳ͠ɺڝ ૪༏ҐΛߏங ໾ׂɿ • ։ൃ૊৫શମͷAIπʔϧ׆༻Λઃܭɾਪ ਐ͠ɺΤϯδχΞͷੜ࢈ੑΛ࠷େԽ • ਓؒͱAIͷ࠷దͳڠಇϞσϧΛߏங ಛ௃ɿ • Claude౳ͷ։ൃࢧԉAIΛ૊Έ߹Θͤͨޮ ཰తͳϫʔΫϑϩʔΛઃܭ • AIੜ੒ίʔυͷ඼࣭ج४ͱϨϏϡʔϓϩ ηεΛཱ֬ • νʔϜͷAIϦςϥγʔ޲্ΛϦʔυ͠ɺ ܧଓతͳվળαΠΫϧ΁ 4-2. ࠓޙͷ໾ׂมԽ ৽͍͠Staff +ΞʔΩλΠϓͷఏҊ
  69. 91 Solver 導 築 解 補 Tech Lead νʔϜΛಋ͖ɺ ํ޲ੑΛࣔ͢

    Architect ٕज़Λઃܭ͠ɺ ࢓૊ΈΛܗͮ͘Δ Right Hand ܦӦ૚Λิࠤ͠ɺ શମΛࢧ͑Δ ෳࡶͳ໰୊Λղ͖΄͙͢ 4-2. ࠓޙͷ໾ׂมԽ ৽͍͠ΞʔΩλΠϓͷఏҊ
  70. 92 4-2. ࠓޙͷ໾ׂมԽ ৽͍͠ΞʔΩλΠϓͷఏҊ 補 Solver 導 築 解 Tech

    Lead νʔϜΛಋ͖ɺ ํ޲ੑΛࣔ͢ Architect ٕज़Λઃܭ͠ɺ ࢓૊ΈΛܗͮ͘Δ Right Hand ܦӦ૚Λิࠤ͠ɺ શମΛࢧ͑Δ ෳࡶͳ໰୊Λղ͖΄͙͢ 革 Innovator AI x ProductͰ ֵ৽తมԽΛ୲͏ 調 Orchestrator ։ൃݱ৔Ͱͷ AI׆༻ΛϦʔυ
  71. 93 4-2. ࠓޙͷ໾ׂมԽ طଘλΠϓͷมԽ 補 Definer 導 統 定 Tech

    Lead νʔϜΛಋ͖ɺ ํ޲ੑΛࣔ͢ Governor ݪଇͱΨΠυϥΠϯͰ AIઃܭΛ ”࣏ΊΔ” Right Hand ܦӦ૚Λิࠤ͠ɺ શମΛࢧ͑Δ ෳࡶͳ໰୊ΛAIʹղ͚ΔܗͰ ఆٛ͢Δ 革 Innovator AI x ProductͰ ֵ৽తมԽΛ୲͏ 調 Orchestrator ։ൃݱ৔Ͱͷ AI׆༻ΛϦʔυ ઃܭͷͨΊͷઃܭɺ ϝλઃܭ΁ ղ͘͜ͱΑΓ΋ɺ ໰୊ͷఆٛͦͷ΋ͷʹՁ஋
  72. 94 4-2. ࠓޙͷ໾ׂมԽ த௕ظ x ϛΫϩɿIC΁ͷӨڹ༧ଌ — ̏ͭͷγφϦΦ ൵؍γφϦΦ —

    ஔ׵ >>> ෮ؼ த༱γφϦΦ — ஔ׵ > ෮ؼ ָ؍γφϦΦ — ஔ׵ ≦ ෮ؼ
  73. 95 4-2. ࠓޙͷ໾ׂมԽ ൵؍ — ”ஔ׵ͷཛྷ”ɿ༧ଌൃੜ཰ 30-35% ϙδγϣϯ70-80%ݮɻۓٸରԠ,ཁ݅ೖྗ,ग़ྗݕূ͋Δ͍͸৬छస׵ த༱ —

    “ੜ࢈ϒʔετ”ɿ༧ଌൃੜ཰ 45-50% ϙδγϣϯ20-30%ݮɻ࣮૷࣌ؒͷେ෯ͳ୹ॖɺAI׆༻ͱग़ྗݕূ ָ؍ — “৽ͨͳ൶”ɿ༧ଌൃੜ཰ 20-25% ϙδγϣϯ૿ɻϓϩδΣΫτ૿ɺٕज़తෳࡶੑ૿ʹΑΔधཁ૿ த௕ظ x ϛΫϩɿIC΁ͷӨڹ༧ଌ — ̏ͭͷγφϦΦ
  74. 96 4-2. ࠓޙͷ໾ׂมԽ ൵؍ — ”ஔ׵ͷཛྷ”ɿ༧ଌൃੜ཰ 30-35% ϙδγϣϯ70-80%ݮɻۓٸରԠ,ཁ݅ೖྗ,ग़ྗݕূ͋Δ͍͸৬छస׵ த༱ —

    “ੜ࢈ϒʔετ”ɿ༧ଌൃੜ཰ 45-50% ϙδγϣϯ20-30%ݮɻ࣮૷࣌ؒͷେ෯ͳ୹ॖɺAI׆༻ͱग़ྗݕূ ָ؍ — “৽ͨͳ൶”ɿ༧ଌൃੜ཰ 20-25% ϙδγϣϯ૿ɻϓϩδΣΫτ૿ɺٕज़తෳࡶੑ૿ʹΑΔधཁ૿ ໌֬ͳλεΫͷ઎ΊΔׂ߹͕ߴ͍ͱɺࣗಈԽ΁ͷ࿐ग़͕ߴ͍ AI׆༻΍ϏδωευϝΠϯཧղɺมԽ΁ͷదԠ͕ΧΪ͔ த௕ظ x ϛΫϩɿIC΁ͷӨڹ༧ଌ — ̏ͭͷγφϦΦ
  75. 97 4-2. ࠓޙͷ໾ׂมԽ • ൵؍తʢஔ׵ޮՌʼ෮ؼޮՌʣ/ ஔ׵཰90%, ൃੜ֬཰30-35% • νέοτϕʔεͷ։ൃ࡞ۀͷ90%Ҏ্͕AIʹΑͬͯࣗಈԽ •

    ૯਺͸70-80%࡟ݮ • ۓٸରԠ΍AI΁ͷཁ݅ೖྗ/ग़ྗ֬ೝͷΑ͏ͳλεΫ͔ɺҧ͏ઐ໳ྖҬ΁ͷ৬छస׵ • த༱ʢ෦෼తόϥϯεʣ/ ஔ׵཰70%, ൃੜ֬཰45-50% • AI͸ڧྗͳิॿ໾ͱͯ͠ػೳ͠ɺجຊ࣮૷͕࣌ؒେ෯୹ॖ • ૯਺͸20-30%ݮগ • AIπʔϧ׆༻ೳྗͱग़ྗݕূεΩϧ >>> ७ਮͳίʔσΟϯάྗ • ָ؍తʢஔ׵ޮՌ ≦ ෮ؼޮՌʣ/ ஔ׵཰60%, ൃੜ֬཰20-25% • ϓϩάϥϛϯάͷຽओԽʹΑΓɺແ਺ͷখن໛ϓϩδΣΫτ͕ര஀ • ٕज़ϝϯλʔ΍ίʔυΩϡϨʔλʔͱͯ͠ɺ৽ͨͳઐ໳ੑͱधཁ͕૑ग़ • ૊৫ͷٕज़తෳࡶੑ૿େʹΑΓɺICΤϯδχΞͷधཁ͕૿Ճ ໌֬ͳλεΫͷ઎ΊΔׂ߹͕ߴ͘ɺࣗಈԽ΁ͷ࿐ग़͕ߴ͍ AI׆༻΍ϏδωευϝΠϯཧղɺมԽ΁ͷదԠ͕ΧΪ͔ Ծఆɿ • ݱࡏஔ׵཰40% • ೥ؒAI੒௕཰ • ൵؍: 50% • த༱: 30% • ఍߅܎਺: 1.0(ஔ͖׵͑ΒΕ Δ΋ͷ͸͢΂ͯஔ͖׵͑Δ) By Claude Opus 4.1 த௕ظ x ϛΫϩɿIC΁ͷӨڹ༧ଌ — ৄࡉ
  76. ·ͱΊɿKey Takeaways! 1. Staff Engineer ͱ͸ʁ • ٕज़ࢀ๳ɺManager Ҏ֎ͷ Individual

    Contributor ͱͯ͠ͷΩϟϦΞ • ̐ͭͷ Archetype — ಋ / ங / ղ / ิ 2. Ͳ͏΍ͬͯͳΔʁ • λΠτϧͷ͋Δձࣾʹ… • Promotion Packet Λ४උ͢Δ/ظ଴͗͢͠ͳ͍ 3. ͲΜͳ࢓ࣄΛ͍ͯ͠Δʁ • Ikuo: ࣮૷/෼ੳ ~22%, ઃܭ/ϨϏϡʔ ~40%, ਪਐ/ӡ༻ ~20%, ૊৫/ར֐ௐ੔ ~18% • Team TL ͔ΒӨڹͷ֦େɺෆ࣮֬ੑͷ؅ཧɺ໰୊ఆٛͱղܾɻAuthority Ͱ͸ͳ͘৴པ 4. ͜Ε͔Βʁ • ̏೥͘Β͍ͷεύϯͰ͸ɺStaff +৬͕ফ͑ڈΔ͜ͱ͸ͳ͍ͩΖ͏ɻͨͩ͠มԽ͸͋Δ • ܧଓతͳΩϟονΞοϓ/Ξοϓσʔτ͕େࣄ
  77. 100 References • ελοϑΤϯδχΞ ― ϚωδϝϯτΛ௒͑ΔϦʔμʔγοϓ • Blog: Staff Engineer:

    Leadership beyond the management track • ελοϑΤϯδχΞͷಓ ―༏Εٕͨज़ઐ໳৬ʹͳΔͨΊͷΨΠυ • Acemoglu, Daron, and Pascual Restrepo. 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor." Journal of Economic Perspectives 33 (2): 3–30. • GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models • Daron Acemoglu, 2024. "The Simple Macroeconomics of AI," NBER Working Papers 32487, National Bureau of Economic Research, Inc. • LLM Coding Performance Bench • SWE-Bench+: Enhanced Coding Benchmark for LLMs • SWE-Bench Verified • LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code • LiveCodeBench Leaderboard • Datasource of 4-1’s Benchmark Fig • Gathered by ChatGPT5 thinking from above leaderboard • Date refers each model’s published date