Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Модель Похожих товаров и её приложения

Модель Похожих товаров и её приложения

Айгуль Газимова (Joom.ru, Junior Machine Learning Developer) @ Moscow Python №78

"Похожие товары – это важная часть для любой e-commerce платформы, а особенно для маркетплейсов. Они помогают покупателям найти лучший товар за меньшие деньги. Joom – международная группа e-commerce и финтех компаний, которая работает как с B2B, так и с B2C сегментами с одной основной командой разработки поиска. Мы поговорим про:
- построение Модели Похожих Товаров для Joom Marketplace (B2C-продукт);
- разработку Модели Похожих Товаров для JoomPro (B2B-продукт), где у нас мало пользовательской истории;
- как с помощью такой модели мы улучшили алгоритмы рекомендаций".

Видео: https://moscowpython.ru/meetup/78/similar-products-search/

Moscow Python Meetup

July 14, 2022
Tweet

More Decks by Moscow Python Meetup

Other Decks in Programming

Transcript

  1. About me AIGUL GAZIMOVA Bachelor’s degree in applied mathematics and

    computer science Cloud storage → eCommerce Search@Joom
  2. JoomPro platform for crossborder wholesale trade International group of e-commerce

    and fintech companies Joom Marketplace platform for shopping from all over the world Onfy pharmaceutical marketplace in Germany Joompay fintech service for daily financial transactions in Europe Joom Logistics business that provides logistics, technology and infrastructure services for crossborder eCommerce
  3. . . . device_id1 product_id1 … product_idn1 device_id2 product_id1 …

    product_idn2 device_idm product_id1 … product_idnm Similar products: idea of using Word2Vec
  4. How to build the Similar Products Model if we lack

    of user activity history? - word2vec approach
  5. How to build the Similar Products Model if we lack

    of user activity history? - word2vec approach
  6. How to build the Similar Products Model if we lack

    of user activity history? - word2vec approach - image-based embeddings
  7. How to build the Similar Products Model if we lack

    of user activity history? - word2vec approach - image-based embeddings
  8. How to build the Similar Products Model if we lack

    of user activity history? - word2vec approach - image-based embeddings to use content information for word2vec approach and to train the model on joom users’ history
  9. category_id product name BOW BPE category emb name emb Transformer

    encoder center embedding context embedding product_id category_id BOW BOW emb categories emb + Content Similar Products Model: architecture
  10. category_id product name BOW BPE category emb name emb Transformer

    encoder center embedding context embedding product_id category_id BOW BOW emb categories emb + Content Similar Products Model: applications
  11. • Similar Products Model for B2C • Content Similar Products

    Model for B2B • Why it’s useful in e-commerce platforms Conclusion