Lock in $30 Savings on PRO—Offer Ends Soon! ⏳

第63回名古屋CV・PRML勉強会:ICCV2025論文紹介 (What to Distill...

Avatar for Naoki Okamoto Naoki Okamoto
December 12, 2025
30

第63回名古屋CV・PRML勉強会:ICCV2025論文紹介 (What to Distill? Fast Knowledge Distillation with Adaptive Sampling)

2025年12月13日の第63回名古屋CV・PRML勉強会におけるICCV2025論文紹介の発表スライドです.
知識蒸留における「データ」と「生徒モデルの精度」の関係について分析したWhat to Distill? Fast Knowledge Distillation with Adaptive Samplingを紹介.

Avatar for Naoki Okamoto

Naoki Okamoto

December 12, 2025
Tweet

More Decks by Naoki Okamoto

Transcript

  1. ࣗݾ঺հ  ݸਓϖʔδ 9 ΞϯαϯϒϧֶशͷͨΊͷ஌ࣝৠཹ  IUUQTXXXFDWBOFUQBQFSTFDDW@QBQFST@&$$7 IUNM@&$$7@@QBQFSQIQ ࣗݾڭࢣ͋ΓֶशͷνϡʔτϦΞϧ 

    #FTUHSBQIGPSFOTFNCMF OPEFT த෦େֶϩΰ த෦େֶϩΰ  ˠ"DRVJSFEJ⒎FSFOUBUUFOUJPONBQT EJWFSTJUZTVJUBCMFGPSFOTFNCMFT JOQVU #SJOHDMPTFSUP #SJOHDMPTFSFBDIPUIFS #SJOHDMPTFSUP #SJOHDMPTFSUP #SJOHDMPTFSUP 4FQBSBUFGSPN 4FQBSBUFGSPN IUUQTTQFBLFSEFDLDPNOBPL[JKJKJBPTIJBSJYVFYJ OJZPSVTIJRJBOYVFYJDWJNUJZVUPSJBSV %BSL,OPXMFEHF ,OPXMFEHF%JTUJMMBUJPO <)JOUPO /*148`> ڭࢣͷ֬཰෼෍ʢ஌ࣝʣΛ ༻͍ͯੜెΛֶश .PEFMDPNQSFTTJPO <#VDJMV㶙 4*(,%%`> Ξϯαϯϒϧͷग़ྗΛϥϕϧͱͯ͠ ͭͷχϡʔϥϧωοτϫʔΫΛֶश Ϟσϧͷ૊Έ߹Θͤ ஌ࣝͷछྨɾ஌ࣝͷసҠํ๏ ೥      44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹ ෳ਺ͷڭࢣʹΑΔΞϯαϯϒϧΛར༻ .VMUJQMF5FBDIFS <:PV ,%%`> ֬཰෼෍Λू໿ '&&% <1BSL,XBL &$"*`> ಛ௃ϚοϓΛू໿ ࣗ෼ࣗ਎ͷ஌ࣝΛར༻ TFMGEJTUJMMBUJPO ਂ͍૚ͷ஌ࣝΛઙ͍૚΁సҠ -FBSOJOHBVOJpFEDMBTTJpFS <)PV $713`> #FZPVSPXOUFBDIFS <;IBOH *$$7`> ෳ਺ͷੜెͷΈͰֶश %.- <;IBOH $713`> ੜెؒͷ஌ࣝৠཹʹΑΓਫ਼౓͕޲্ 0/& <-BO /FVSM14`> $PMMBCPSBUJWFMFBSOJOH <4POHˍ$IBJ /FVSM14`> ੜెͷઙ͍૚ΛॏΈڞ༗ͯ͠ύϥϝʔλ਺Λ࡟ݮ ஈ֊తʹ஌ࣝΛసҠ   7*% <"IO $713`> ૬ޓ৘ใྔ $3% <5JBO *$-3`> ରরֶश "'% <$IVOH *$.-`> ఢରతֶश ,OPXMFEHF%J⒎VTJPO <)VBOH /FVS*14`> ֦ࢄϞσϧͷֶशํ๏ ,OPXMFEHF3FWJFX <$IFO $713`> ҟͳΔਂ͞ͷ૚ͷؒͰ ஌ࣝΛసҠ .(% <:BOH &$$7`> ϚεΫͨ͠ੜెͷಛ௃Ϛοϓ͔Β ڭࢣͷಛ௃ϚοϓΛ༧ଌ தؒ૚ͷ஌ࣝͷసҠํ๏Λվળ 3,% <1BSL $713`> αϯϓϧؒͷؔ܎ੑ 'MPXPG4PMVUJPO1SPDFEVSF <:JN $713`> ૚ؒͷग़ྗͷ૬ޓؔ܎ "UUFOUJPO5SBOTGFS <;BHPSVZLP *$-3`> "UUFOUJPONBQ தؒ૚ͷग़ྗ͔Β஌ࣝΛநग़ ".3"%*0 <3BO[JOHFS $713`> ෳ਺ͷج൫Ϟσϧ %*/0W $-*1 4". ֶशΛૣظऴྃͨ͠ڭࢣΛར༻ 3$0 <+JO *$$7`> 0OUIFF⒏DBDZ <$IPˍ)BSJIBSBO *$$7`> ೳྗΪϟοϓ໰୊ʹରԠ "VUP,% <-J *$$7`> தؒ૚ͷ஌ࣝදݱ &OTFNCMF,5( <0LBNPUP &$$7`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ ,%;FSP <-J /FVS*14`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ -BSHFTDBMFEJTUSJCVUFE <"OJM *$-3`> ֬཰෼෍Λू໿ %VBMOFU <)PV *$$7`> ಛ௃ϚοϓΛू໿ ෳ਺ͷੜెʹΑΔΞϯαϯϒϧΛར༻ %BUBTFU%JTUJMMBUJPO <8BOH BS9JW`> ֶशࡁΈϞσϧͷਫ਼౓͕ߴ͘ͳΔ Α͏ʹೖྗϊΠζΛ࠷దԽ ͦͷଞɿσʔληοτͷৠཹ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ஌ࣝΛసҠ ڭࢣ ڭࢣ #"/ <'VSMBOFMMP *$.-`> 4NBMMˠ4NBMMˠʜ TFMGEJTUJMMBUJPO 5FBDIFS"TTJTUBOU <.JS[BEFI """*`> -BSHFˠ.JEEMFˠ4NBMM ʢೳྗΪϟοϓ໰୊ʹରԠʣ %BUBEJTUPSUJPOHVJEFETFMGEJTUJMMBUJPO <9VBOE-JV """*`> ݩσʔλ͕ಉ֦͡ுޙͷσʔλͷग़ྗΛ༧ଌ ʢσʔλ͔Βσʔλ΁ͷTFMGEJTUJMMBUJPOʣ ஌ࣝΛసҠ ੜె σʔλ ͭͷڭࢣͰΞϯαϯϒϧ %BUBEJTUJMMBUJPO <3BEPTBWPWJD $713`> σʔλ֦ுΛར༻ 1SFQBSJOH-FTTPOT <8FO /FVSPDPNQVUJOH`> ޡೝࣝͨ͠σʔλͷ஌ࣝͱ ෆ࣮֬ͳ஌ࣝΛௐ੔ (SBEVBM4BNQMJOH(BUF <.JOBNJ .7"`> ਖ਼ղͨ͠σʔλͷ ஌ࣝͷΈΛసҠ ग़ྗ૚ͷ஌ࣝͷసҠํ๏Λվળ 'VODUJPO.BUDIJOH <#FZFS $713`> NJYVQʹΑΔଟ༷ͳը૾Λ༻͍ͯ ڭࢣͱੜెؒͰؔ਺Ϛονϯά &⒎FDUJWFOFTTPGGVODUJPONBUDIJOH JOESJWJOHTDFOFSFDPHOJUJPO <:BTIJNB &$$78`> ϥϕϧͳ͠σʔλΛ༻͍ͯؔ਺Ϛονϯά ؔ਺Ϛονϯάͱͯ͠஌ࣝৠཹΛ࠶ߟ %*45 <)VBOH /FVS*14`> ΫϥεؒʹՃ͑ͯ Ϋϥε಺ͷ૬ؔΛసҠ 0GGMJOF %JTUJMMBUJPO 0OMJOF %JTUJMMBUJPO ஌ࣝΛసҠ ڭࢣ ੜె ΑΓଟ༷ͳ৘ใΛ࣋ͭ தؒ૚ͷग़ྗΛར༻ 'JU/FUT <3PNFSP *$-3`> தؒ૚ͷ஌ࣝͱͯ͠ ಛ௃ϚοϓΛ࢖༻ ɹɹɿύϥϝʔλΛݻఆ ɹɹɿύϥϝʔλΛߋ৽ ڭࢣɿֶशࡁΈϞσϧ ੜెɿະֶशͷϞσϧ ੜెͷΈΛ༻͍ͯ ੜెؒͰ஌ࣝΛసҠ ڭࢣͷ஌ࣝΛੜె΁సҠ ஌ࣝৠཹͷࣗಈઃܭ ஌ࣝసҠΛิॿ͢ΔϞσϧΛ௥Ճ 3FTJEVBM,% <(BP BS9JW`> ஌ࣝͷࠩΛิ׬͢Δ"TTJTUBOU ҟͳΔϞσϧߏ଄ؒͰ஌ࣝΛసҠ %FJ5 <5PVWSPO *$.-`> ஌ࣝͱͯ֬͠཰෼෍Λ༻͍ͯ $//͔Β7J5΁஌ࣝৠཹ 0OFGPS"MM <)BP /FVS*14`> தؒग़ྗΛMPHJUۭؒʹ౤Ө͢Δ͜ͱͰ ҟͳΔߏ଄ͷϞσϧؒͰதؒ૚ৠཹ ஌ࣝৠཹͷࣗಈઃܭ ,5( <.JOBNJ "$$7`> Ϟσϧͱଛࣦͷ૊Έ߹Θͤ 0SBDMF,OPXMFEHF%JTUJMMBUJPO <,BOH """*`> ΞϯαϯϒϧڭࢣͷͨΊͷੜెͷϞσϧߏ଄ Ϋϥεߏ੒΍λεΫ͕ҟͳΔෳ਺ͷڭࢣͷ஌ࣝΛੜెʹू໿ 4UVEFOUCFDPNJOHUIFNBTUFS <:F $713`> ηϚηάΛֶशͨ͠ڭࢣͱਂ౓ਪఆΛֶशͨ͠ڭࢣ "NBMHBNBUJOH,OPXMFEHF <4IFO """*`> ҟͳΔ෼ྨλεΫΛֶशͨ͠ෳ਺ͷڭࢣ ಛఆͷλεΫ ֶश Ϟσϧʹ͓͚Δ஌ࣝΛઃܭ $-*1,% <'BOH $713`> $-*1ɿ$-*1ʹ͓͍ͯ ैདྷͷ஌ࣝͷ༗ޮੑΛௐࠪ .JOJ7J5 <;IBOH $713`> 7JTJPO5SBOTGPSNFSɿ ΞςϯγϣϯॏΈͱύοντʔΫϯ .BOJGPME%JTUJMMBUJPO <)BP /FVS*14`> 7JTJPO5SBOTGPSNFSɿ ύονؒͷؔ܎ੑ -BSHFTDBMFJODSFNFOUBMMFBSOJOH <8V $713`> ܧଓֶशɿաڈλεΫͰ ֶशͨ͠Ϟσϧͷ֬཰෼෍ *NQSPWJOHGBTUTFHNFOUBUJPO XJUIUFBDIFSTUVEFOUMFBSOJOH <9JF #.7$`> ηϚηάɿۙ๣ͷϐΫηϧͱͷMPHJUؔ܎ 4&&% <'BOH *$-3`> ࣗݾڭࢣ͋Γֶशɿ αϯϓϧؒͷؔ܎ੑ -FBSOJOHF⒏DJFOUPCKFDUEFUFDUJPO NPEFMTXJUILOPXMFEHFEJTUJMMBUJPO <;BHPSVZLP *$-3`> ෺ମݕग़ɿ෺ମྖҬͷۣܗ ڭࢣ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ IUUQTDPO fi UBUMBTKQHVJEFFWFOUTTJJTUBUJD TQFDJBM@QSPKFDU@UFDI@NBQ 44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹ  ࠓճ͸஌ࣝৠཹͷ*$$7࿦จΛ঺հ͠·͢ʂ Ԭຊ௚थ /BPLJ0LBNPUP த෦େֶ.13(ʢ౻٢ɾࢁԼݚڀࣨʣݚڀһ ݚڀ෼໺ɿ஌ࣝৠཹɼ൒ڭࢣ͋Γֶशɼࣗݾڭࢣ͋Γֶश ത࢜ ޻ֶ
  2. ஌ࣝৠཹɿ,OPXMFEHF%JTUJMMBUJPO ,% <)JOUPO /FVS*148`> w ೖྗσʔλʹର͢Δग़ྗ෼෍ΛϞσϧͷ֫ಘͨ͠஌ࣝͱͯ͠࢖༻ w ੜెϞσϧ͸ڭࢣϞσϧͷग़ྗ෼෍ʢ஌ࣝʣͱਖ਼ղϥϕϧΛ༻ֶ͍ͯश  ଛࣦؔ਺ͱͯ͠$SPTT&OUSPQZΛ࢖༻

    ੜెϞσϧ $SPTT&OUSPQZ MBCFM ڭࢣϞσϧ QSFUSBJOFE 4PGUUBSHFU ʢڭࢣϞσϧͷ஌ࣝʣ )BSEUBSHFU ʢਖ਼ղϥϕϧʣ $SPTT&OUSPQZ p1 p2 ʢ֬཰෼෍ʣ #BDLQSPQ ೖྗσʔλ 
  3. ஌ࣝৠཹɿ,OPXMFEHF%JTUJMMBUJPO ,% <)JOUPO /FVS*148`> w ͳͥ,%͸͏·͘ߦ͘ͷ͔ʁ ग़ྗ֬཰͸ਖ਼ղΫϥε EPH ͱͦͷଞͷΫϥεɹɹɹɹɹɹͱͷ૬ؔੑΛࣔ͢ DBU

    TIFFQ HPBU ⋮ p1 EPH TIFFQ DBU HPBU ෆਖ਼ղΫϥεͷ৘ใ΋ֶशʹར༻ %BSL,OPXMFEHFʢӅΕͨ஌ࣝʣ ڭࢣϞσϧ QSFUSBJOFE ਖ਼ղΫϥεɿEPH 
  4. ஌ࣝৠཹͷਐలʢ44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹʣ  %BSL,OPXMFEHF ,OPXMFEHF%JTUJMMBUJPO <)JOUPO /*148`> ڭࢣͷ֬཰෼෍ʢ஌ࣝʣΛ ༻͍ͯੜెΛֶश .PEFMDPNQSFTTJPO <#VDJMV㶙

    4*(,%%`> Ξϯαϯϒϧͷग़ྗΛϥϕϧͱͯ͠ ͭͷχϡʔϥϧωοτϫʔΫΛֶश Ϟσϧͷ૊Έ߹Θͤ ஌ࣝͷछྨɾ஌ࣝͷసҠํ๏ ೥      44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹ ෳ਺ͷڭࢣʹΑΔΞϯαϯϒϧΛར༻ .VMUJQMF5FBDIFS <:PV ,%%`> ֬཰෼෍Λू໿ '&&% <1BSL,XBL &$"*`> ಛ௃ϚοϓΛू໿ ࣗ෼ࣗ਎ͷ஌ࣝΛར༻ TFMGEJTUJMMBUJPO ਂ͍૚ͷ஌ࣝΛઙ͍૚΁సҠ -FBSOJOHBVOJpFEDMBTTJpFS <)PV $713`> #FZPVSPXOUFBDIFS <;IBOH *$$7`> ෳ਺ͷੜెͷΈͰֶश %.- <;IBOH $713`> ੜెؒͷ஌ࣝৠཹʹΑΓਫ਼౓͕޲্ 0/& <-BO /FVSM14`> $PMMBCPSBUJWFMFBSOJOH <4POHˍ$IBJ /FVSM14`> ੜెͷઙ͍૚ΛॏΈڞ༗ͯ͠ύϥϝʔλ਺Λ࡟ݮ ஈ֊తʹ஌ࣝΛసҠ   7*% <"IO $713`> ૬ޓ৘ใྔ $3% <5JBO *$-3`> ରরֶश "'% <$IVOH *$.-`> ఢରతֶश ,OPXMFEHF%J⒎VTJPO <)VBOH /FVS*14`> ֦ࢄϞσϧͷֶशํ๏ ,OPXMFEHF3FWJFX <$IFO $713`> ҟͳΔਂ͞ͷ૚ͷؒͰ ஌ࣝΛసҠ .(% <:BOH &$$7`> ϚεΫͨ͠ੜెͷಛ௃Ϛοϓ͔Β ڭࢣͷಛ௃ϚοϓΛ༧ଌ தؒ૚ͷ஌ࣝͷసҠํ๏Λվળ 3,% <1BSL $713`> αϯϓϧؒͷؔ܎ੑ 'MPXPG4PMVUJPO1SPDFEVSF <:JN $713`> ૚ؒͷग़ྗͷ૬ޓؔ܎ "UUFOUJPO5SBOTGFS <;BHPSVZLP *$-3`> "UUFOUJPONBQ தؒ૚ͷग़ྗ͔Β஌ࣝΛநग़ ".3"%*0 <3BO[JOHFS $713`> ෳ਺ͷج൫Ϟσϧ %*/0W $-*1 4". ֶशΛૣظऴྃͨ͠ڭࢣΛར༻ 3$0 <+JO *$$7`> 0OUIFF⒏DBDZ <$IPˍ)BSJIBSBO *$$7`> ೳྗΪϟοϓ໰୊ʹରԠ "VUP,% <-J *$$7`> தؒ૚ͷ஌ࣝදݱ &OTFNCMF,5( <0LBNPUP &$$7`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ ,%;FSP <-J /FVS*14`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ -BSHFTDBMFEJTUSJCVUFE <"OJM *$-3`> ֬཰෼෍Λू໿ %VBMOFU <)PV *$$7`> ಛ௃ϚοϓΛू໿ ෳ਺ͷੜెʹΑΔΞϯαϯϒϧΛར༻ %BUBTFU%JTUJMMBUJPO <8BOH BS9JW`> ֶशࡁΈϞσϧͷਫ਼౓͕ߴ͘ͳΔ Α͏ʹೖྗϊΠζΛ࠷దԽ ͦͷଞɿσʔληοτͷৠཹ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ஌ࣝΛసҠ ڭࢣ ڭࢣ #"/ <'VSMBOFMMP *$.-`> 4NBMMˠ4NBMMˠʜ TFMGEJTUJMMBUJPO 5FBDIFS"TTJTUBOU <.JS[BEFI """*`> -BSHFˠ.JEEMFˠ4NBMM ʢೳྗΪϟοϓ໰୊ʹରԠʣ %BUBEJTUPSUJPOHVJEFETFMGEJTUJMMBUJPO <9VBOE-JV """*`> ݩσʔλ͕ಉ֦͡ுޙͷσʔλͷग़ྗΛ༧ଌ ʢσʔλ͔Βσʔλ΁ͷTFMGEJTUJMMBUJPOʣ ஌ࣝΛసҠ ੜె σʔλ ͭͷڭࢣͰΞϯαϯϒϧ %BUBEJTUJMMBUJPO <3BEPTBWPWJD $713`> σʔλ֦ுΛར༻ 1SFQBSJOH-FTTPOT <8FO /FVSPDPNQVUJOH`> ޡೝࣝͨ͠σʔλͷ஌ࣝͱ ෆ࣮֬ͳ஌ࣝΛௐ੔ (SBEVBM4BNQMJOH(BUF <.JOBNJ .7"`> ਖ਼ղͨ͠σʔλͷ ஌ࣝͷΈΛసҠ ग़ྗ૚ͷ஌ࣝͷసҠํ๏Λվળ 'VODUJPO.BUDIJOH <#FZFS $713`> NJYVQʹΑΔଟ༷ͳը૾Λ༻͍ͯ ڭࢣͱੜెؒͰؔ਺Ϛονϯά &⒎FDUJWFOFTTPGGVODUJPONBUDIJOH JOESJWJOHTDFOFSFDPHOJUJPO <:BTIJNB &$$78`> ϥϕϧͳ͠σʔλΛ༻͍ͯؔ਺Ϛονϯά ؔ਺Ϛονϯάͱͯ͠஌ࣝৠཹΛ࠶ߟ %*45 <)VBOH /FVS*14`> ΫϥεؒʹՃ͑ͯ Ϋϥε಺ͷ૬ؔΛసҠ 0GGMJOF %JTUJMMBUJPO 0OMJOF %JTUJMMBUJPO ஌ࣝΛసҠ ڭࢣ ੜె ΑΓଟ༷ͳ৘ใΛ࣋ͭ தؒ૚ͷग़ྗΛར༻ 'JU/FUT <3PNFSP *$-3`> தؒ૚ͷ஌ࣝͱͯ͠ ಛ௃ϚοϓΛ࢖༻ ɹɹɿύϥϝʔλΛݻఆ ɹɹɿύϥϝʔλΛߋ৽ ڭࢣɿֶशࡁΈϞσϧ ੜెɿະֶशͷϞσϧ ੜెͷΈΛ༻͍ͯ ੜెؒͰ஌ࣝΛసҠ ڭࢣͷ஌ࣝΛੜె΁సҠ ஌ࣝৠཹͷࣗಈઃܭ ஌ࣝసҠΛิॿ͢ΔϞσϧΛ௥Ճ 3FTJEVBM,% <(BP BS9JW`> ஌ࣝͷࠩΛิ׬͢Δ"TTJTUBOU ҟͳΔϞσϧߏ଄ؒͰ஌ࣝΛసҠ %FJ5 <5PVWSPO *$.-`> ஌ࣝͱͯ֬͠཰෼෍Λ༻͍ͯ $//͔Β7J5΁஌ࣝৠཹ 0OFGPS"MM <)BP /FVS*14`> தؒग़ྗΛMPHJUۭؒʹ౤Ө͢Δ͜ͱͰ ҟͳΔߏ଄ͷϞσϧؒͰதؒ૚ৠཹ ஌ࣝৠཹͷࣗಈઃܭ ,5( <.JOBNJ "$$7`> Ϟσϧͱଛࣦͷ૊Έ߹Θͤ 0SBDMF,OPXMFEHF%JTUJMMBUJPO <,BOH """*`> ΞϯαϯϒϧڭࢣͷͨΊͷੜెͷϞσϧߏ଄ Ϋϥεߏ੒΍λεΫ͕ҟͳΔෳ਺ͷڭࢣͷ஌ࣝΛੜెʹू໿ 4UVEFOUCFDPNJOHUIFNBTUFS <:F $713`> ηϚηάΛֶशͨ͠ڭࢣͱਂ౓ਪఆΛֶशͨ͠ڭࢣ "NBMHBNBUJOH,OPXMFEHF <4IFO """*`> ҟͳΔ෼ྨλεΫΛֶशͨ͠ෳ਺ͷڭࢣ ಛఆͷλεΫ ֶश Ϟσϧʹ͓͚Δ஌ࣝΛઃܭ $-*1,% <'BOH $713`> $-*1ɿ$-*1ʹ͓͍ͯ ैདྷͷ஌ࣝͷ༗ޮੑΛௐࠪ .JOJ7J5 <;IBOH $713`> 7JTJPO5SBOTGPSNFSɿ ΞςϯγϣϯॏΈͱύοντʔΫϯ .BOJGPME%JTUJMMBUJPO <)BP /FVS*14`> 7JTJPO5SBOTGPSNFSɿ ύονؒͷؔ܎ੑ -BSHFTDBMFJODSFNFOUBMMFBSOJOH <8V $713`> ܧଓֶशɿաڈλεΫͰ ֶशͨ͠Ϟσϧͷ֬཰෼෍ *NQSPWJOHGBTUTFHNFOUBUJPO XJUIUFBDIFSTUVEFOUMFBSOJOH <9JF #.7$`> ηϚηάɿۙ๣ͷϐΫηϧͱͷMPHJUؔ܎ 4&&% <'BOH *$-3`> ࣗݾڭࢣ͋Γֶशɿ αϯϓϧؒͷؔ܎ੑ -FBSOJOHF⒏DJFOUPCKFDUEFUFDUJPO NPEFMTXJUILOPXMFEHFEJTUJMMBUJPO <;BHPSVZLP *$-3`> ෺ମݕग़ɿ෺ମྖҬͷۣܗ ڭࢣ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ
  5. ஌ࣝৠཹͷਐలʢ44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹʣ  %BSL,OPXMFEHF ,OPXMFEHF%JTUJMMBUJPO <)JOUPO /*148`> ڭࢣͷ֬཰෼෍ʢ஌ࣝʣΛ ༻͍ͯੜెΛֶश .PEFMDPNQSFTTJPO <#VDJMV㶙

    4*(,%%`> Ξϯαϯϒϧͷग़ྗΛϥϕϧͱͯ͠ ͭͷχϡʔϥϧωοτϫʔΫΛֶश Ϟσϧͷ૊Έ߹Θͤ ஌ࣝͷछྨɾ஌ࣝͷసҠํ๏ ೥      44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹ ෳ਺ͷڭࢣʹΑΔΞϯαϯϒϧΛར༻ .VMUJQMF5FBDIFS <:PV ,%%`> ֬཰෼෍Λू໿ '&&% <1BSL,XBL &$"*`> ಛ௃ϚοϓΛू໿ ࣗ෼ࣗ਎ͷ஌ࣝΛར༻ TFMGEJTUJMMBUJPO ਂ͍૚ͷ஌ࣝΛઙ͍૚΁సҠ -FBSOJOHBVOJpFEDMBTTJpFS <)PV $713`> #FZPVSPXOUFBDIFS <;IBOH *$$7`> ෳ਺ͷੜెͷΈͰֶश %.- <;IBOH $713`> ੜెؒͷ஌ࣝৠཹʹΑΓਫ਼౓͕޲্ 0/& <-BO /FVSM14`> $PMMBCPSBUJWFMFBSOJOH <4POHˍ$IBJ /FVSM14`> ੜెͷઙ͍૚ΛॏΈڞ༗ͯ͠ύϥϝʔλ਺Λ࡟ݮ ஈ֊తʹ஌ࣝΛసҠ   7*% <"IO $713`> ૬ޓ৘ใྔ $3% <5JBO *$-3`> ରরֶश "'% <$IVOH *$.-`> ఢରతֶश ,OPXMFEHF%J⒎VTJPO <)VBOH /FVS*14`> ֦ࢄϞσϧͷֶशํ๏ ,OPXMFEHF3FWJFX <$IFO $713`> ҟͳΔਂ͞ͷ૚ͷؒͰ ஌ࣝΛసҠ .(% <:BOH &$$7`> ϚεΫͨ͠ੜెͷಛ௃Ϛοϓ͔Β ڭࢣͷಛ௃ϚοϓΛ༧ଌ தؒ૚ͷ஌ࣝͷసҠํ๏Λվળ 3,% <1BSL $713`> αϯϓϧؒͷؔ܎ੑ 'MPXPG4PMVUJPO1SPDFEVSF <:JN $713`> ૚ؒͷग़ྗͷ૬ޓؔ܎ "UUFOUJPO5SBOTGFS <;BHPSVZLP *$-3`> "UUFOUJPONBQ தؒ૚ͷग़ྗ͔Β஌ࣝΛநग़ ".3"%*0 <3BO[JOHFS $713`> ෳ਺ͷج൫Ϟσϧ %*/0W $-*1 4". ֶशΛૣظऴྃͨ͠ڭࢣΛར༻ 3$0 <+JO *$$7`> 0OUIFF⒏DBDZ <$IPˍ)BSJIBSBO *$$7`> ೳྗΪϟοϓ໰୊ʹରԠ "VUP,% <-J *$$7`> தؒ૚ͷ஌ࣝදݱ &OTFNCMF,5( <0LBNPUP &$$7`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ ,%;FSP <-J /FVS*14`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ -BSHFTDBMFEJTUSJCVUFE <"OJM *$-3`> ֬཰෼෍Λू໿ %VBMOFU <)PV *$$7`> ಛ௃ϚοϓΛू໿ ෳ਺ͷੜెʹΑΔΞϯαϯϒϧΛར༻ %BUBTFU%JTUJMMBUJPO <8BOH BS9JW`> ֶशࡁΈϞσϧͷਫ਼౓͕ߴ͘ͳΔ Α͏ʹೖྗϊΠζΛ࠷దԽ ͦͷଞɿσʔληοτͷৠཹ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ஌ࣝΛసҠ ڭࢣ ڭࢣ #"/ <'VSMBOFMMP *$.-`> 4NBMMˠ4NBMMˠʜ TFMGEJTUJMMBUJPO 5FBDIFS"TTJTUBOU <.JS[BEFI """*`> -BSHFˠ.JEEMFˠ4NBMM ʢೳྗΪϟοϓ໰୊ʹରԠʣ %BUBEJTUPSUJPOHVJEFETFMGEJTUJMMBUJPO <9VBOE-JV """*`> ݩσʔλ͕ಉ֦͡ுޙͷσʔλͷग़ྗΛ༧ଌ ʢσʔλ͔Βσʔλ΁ͷTFMGEJTUJMMBUJPOʣ ஌ࣝΛసҠ ੜె σʔλ ͭͷڭࢣͰΞϯαϯϒϧ %BUBEJTUJMMBUJPO <3BEPTBWPWJD $713`> σʔλ֦ுΛར༻ 1SFQBSJOH-FTTPOT <8FO /FVSPDPNQVUJOH`> ޡೝࣝͨ͠σʔλͷ஌ࣝͱ ෆ࣮֬ͳ஌ࣝΛௐ੔ (SBEVBM4BNQMJOH(BUF <.JOBNJ .7"`> ਖ਼ղͨ͠σʔλͷ ஌ࣝͷΈΛసҠ ग़ྗ૚ͷ஌ࣝͷసҠํ๏Λվળ 'VODUJPO.BUDIJOH <#FZFS $713`> NJYVQʹΑΔଟ༷ͳը૾Λ༻͍ͯ ڭࢣͱੜెؒͰؔ਺Ϛονϯά &⒎FDUJWFOFTTPGGVODUJPONBUDIJOH JOESJWJOHTDFOFSFDPHOJUJPO <:BTIJNB &$$78`> ϥϕϧͳ͠σʔλΛ༻͍ͯؔ਺Ϛονϯά ؔ਺Ϛονϯάͱͯ͠஌ࣝৠཹΛ࠶ߟ %*45 <)VBOH /FVS*14`> ΫϥεؒʹՃ͑ͯ Ϋϥε಺ͷ૬ؔΛసҠ 0GGMJOF %JTUJMMBUJPO 0OMJOF %JTUJMMBUJPO ஌ࣝΛసҠ ڭࢣ ੜె ΑΓଟ༷ͳ৘ใΛ࣋ͭ தؒ૚ͷग़ྗΛར༻ 'JU/FUT <3PNFSP *$-3`> தؒ૚ͷ஌ࣝͱͯ͠ ಛ௃ϚοϓΛ࢖༻ ɹɹɿύϥϝʔλΛݻఆ ɹɹɿύϥϝʔλΛߋ৽ ڭࢣɿֶशࡁΈϞσϧ ੜెɿະֶशͷϞσϧ ੜెͷΈΛ༻͍ͯ ੜెؒͰ஌ࣝΛసҠ ڭࢣͷ஌ࣝΛੜె΁సҠ ஌ࣝৠཹͷࣗಈઃܭ ஌ࣝసҠΛิॿ͢ΔϞσϧΛ௥Ճ 3FTJEVBM,% <(BP BS9JW`> ஌ࣝͷࠩΛิ׬͢Δ"TTJTUBOU ҟͳΔϞσϧߏ଄ؒͰ஌ࣝΛసҠ %FJ5 <5PVWSPO *$.-`> ஌ࣝͱͯ֬͠཰෼෍Λ༻͍ͯ $//͔Β7J5΁஌ࣝৠཹ 0OFGPS"MM <)BP /FVS*14`> தؒग़ྗΛMPHJUۭؒʹ౤Ө͢Δ͜ͱͰ ҟͳΔߏ଄ͷϞσϧؒͰதؒ૚ৠཹ ஌ࣝৠཹͷࣗಈઃܭ ,5( <.JOBNJ "$$7`> Ϟσϧͱଛࣦͷ૊Έ߹Θͤ 0SBDMF,OPXMFEHF%JTUJMMBUJPO <,BOH """*`> ΞϯαϯϒϧڭࢣͷͨΊͷੜెͷϞσϧߏ଄ Ϋϥεߏ੒΍λεΫ͕ҟͳΔෳ਺ͷڭࢣͷ஌ࣝΛੜెʹू໿ 4UVEFOUCFDPNJOHUIFNBTUFS <:F $713`> ηϚηάΛֶशͨ͠ڭࢣͱਂ౓ਪఆΛֶशͨ͠ڭࢣ "NBMHBNBUJOH,OPXMFEHF <4IFO """*`> ҟͳΔ෼ྨλεΫΛֶशͨ͠ෳ਺ͷڭࢣ ಛఆͷλεΫ ֶश Ϟσϧʹ͓͚Δ஌ࣝΛઃܭ $-*1,% <'BOH $713`> $-*1ɿ$-*1ʹ͓͍ͯ ैདྷͷ஌ࣝͷ༗ޮੑΛௐࠪ .JOJ7J5 <;IBOH $713`> 7JTJPO5SBOTGPSNFSɿ ΞςϯγϣϯॏΈͱύοντʔΫϯ .BOJGPME%JTUJMMBUJPO <)BP /FVS*14`> 7JTJPO5SBOTGPSNFSɿ ύονؒͷؔ܎ੑ -BSHFTDBMFJODSFNFOUBMMFBSOJOH <8V $713`> ܧଓֶशɿաڈλεΫͰ ֶशͨ͠Ϟσϧͷ֬཰෼෍ *NQSPWJOHGBTUTFHNFOUBUJPO XJUIUFBDIFSTUVEFOUMFBSOJOH <9JF #.7$`> ηϚηάɿۙ๣ͷϐΫηϧͱͷMPHJUؔ܎ 4&&% <'BOH *$-3`> ࣗݾڭࢣ͋Γֶशɿ αϯϓϧؒͷؔ܎ੑ -FBSOJOHF⒏DJFOUPCKFDUEFUFDUJPO NPEFMTXJUILOPXMFEHFEJTUJMMBUJPO <;BHPSVZLP *$-3`> ෺ମݕग़ɿ෺ମྖҬͷۣܗ ڭࢣ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ,%Λى఺ʹ ༷ʑͳํ๏΁ൃల
  6. ஌ࣝৠཹͷਐలʢ44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹʣ  %BSL,OPXMFEHF ,OPXMFEHF%JTUJMMBUJPO <)JOUPO /*148`> ڭࢣͷ֬཰෼෍ʢ஌ࣝʣΛ ༻͍ͯੜెΛֶश .PEFMDPNQSFTTJPO <#VDJMV㶙

    4*(,%%`> Ξϯαϯϒϧͷग़ྗΛϥϕϧͱͯ͠ ͭͷχϡʔϥϧωοτϫʔΫΛֶश Ϟσϧͷ૊Έ߹Θͤ ஌ࣝͷछྨɾ஌ࣝͷసҠํ๏ ೥      44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹ ෳ਺ͷڭࢣʹΑΔΞϯαϯϒϧΛར༻ .VMUJQMF5FBDIFS <:PV ,%%`> ֬཰෼෍Λू໿ '&&% <1BSL,XBL &$"*`> ಛ௃ϚοϓΛू໿ ࣗ෼ࣗ਎ͷ஌ࣝΛར༻ TFMGEJTUJMMBUJPO ਂ͍૚ͷ஌ࣝΛઙ͍૚΁సҠ -FBSOJOHBVOJpFEDMBTTJpFS <)PV $713`> #FZPVSPXOUFBDIFS <;IBOH *$$7`> ෳ਺ͷੜెͷΈͰֶश %.- <;IBOH $713`> ੜెؒͷ஌ࣝৠཹʹΑΓਫ਼౓͕޲্ 0/& <-BO /FVSM14`> $PMMBCPSBUJWFMFBSOJOH <4POHˍ$IBJ /FVSM14`> ੜెͷઙ͍૚ΛॏΈڞ༗ͯ͠ύϥϝʔλ਺Λ࡟ݮ ஈ֊తʹ஌ࣝΛసҠ   7*% <"IO $713`> ૬ޓ৘ใྔ $3% <5JBO *$-3`> ରরֶश "'% <$IVOH *$.-`> ఢରతֶश ,OPXMFEHF%J⒎VTJPO <)VBOH /FVS*14`> ֦ࢄϞσϧͷֶशํ๏ ,OPXMFEHF3FWJFX <$IFO $713`> ҟͳΔਂ͞ͷ૚ͷؒͰ ஌ࣝΛసҠ .(% <:BOH &$$7`> ϚεΫͨ͠ੜెͷಛ௃Ϛοϓ͔Β ڭࢣͷಛ௃ϚοϓΛ༧ଌ தؒ૚ͷ஌ࣝͷసҠํ๏Λվળ 3,% <1BSL $713`> αϯϓϧؒͷؔ܎ੑ 'MPXPG4PMVUJPO1SPDFEVSF <:JN $713`> ૚ؒͷग़ྗͷ૬ޓؔ܎ "UUFOUJPO5SBOTGFS <;BHPSVZLP *$-3`> "UUFOUJPONBQ தؒ૚ͷग़ྗ͔Β஌ࣝΛநग़ ".3"%*0 <3BO[JOHFS $713`> ෳ਺ͷج൫Ϟσϧ %*/0W $-*1 4". ֶशΛૣظऴྃͨ͠ڭࢣΛར༻ 3$0 <+JO *$$7`> 0OUIFF⒏DBDZ <$IPˍ)BSJIBSBO *$$7`> ೳྗΪϟοϓ໰୊ʹରԠ "VUP,% <-J *$$7`> தؒ૚ͷ஌ࣝදݱ &OTFNCMF,5( <0LBNPUP &$$7`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ ,%;FSP <-J /FVS*14`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ -BSHFTDBMFEJTUSJCVUFE <"OJM *$-3`> ֬཰෼෍Λू໿ %VBMOFU <)PV *$$7`> ಛ௃ϚοϓΛू໿ ෳ਺ͷੜెʹΑΔΞϯαϯϒϧΛར༻ %BUBTFU%JTUJMMBUJPO <8BOH BS9JW`> ֶशࡁΈϞσϧͷਫ਼౓͕ߴ͘ͳΔ Α͏ʹೖྗϊΠζΛ࠷దԽ ͦͷଞɿσʔληοτͷৠཹ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ஌ࣝΛసҠ ڭࢣ ڭࢣ #"/ <'VSMBOFMMP *$.-`> 4NBMMˠ4NBMMˠʜ TFMGEJTUJMMBUJPO 5FBDIFS"TTJTUBOU <.JS[BEFI """*`> -BSHFˠ.JEEMFˠ4NBMM ʢೳྗΪϟοϓ໰୊ʹରԠʣ %BUBEJTUPSUJPOHVJEFETFMGEJTUJMMBUJPO <9VBOE-JV """*`> ݩσʔλ͕ಉ֦͡ுޙͷσʔλͷग़ྗΛ༧ଌ ʢσʔλ͔Βσʔλ΁ͷTFMGEJTUJMMBUJPOʣ ஌ࣝΛసҠ ੜె σʔλ ͭͷڭࢣͰΞϯαϯϒϧ %BUBEJTUJMMBUJPO <3BEPTBWPWJD $713`> σʔλ֦ுΛར༻ 1SFQBSJOH-FTTPOT <8FO /FVSPDPNQVUJOH`> ޡೝࣝͨ͠σʔλͷ஌ࣝͱ ෆ࣮֬ͳ஌ࣝΛௐ੔ (SBEVBM4BNQMJOH(BUF <.JOBNJ .7"`> ਖ਼ղͨ͠σʔλͷ ஌ࣝͷΈΛసҠ ग़ྗ૚ͷ஌ࣝͷసҠํ๏Λվળ 'VODUJPO.BUDIJOH <#FZFS $713`> NJYVQʹΑΔଟ༷ͳը૾Λ༻͍ͯ ڭࢣͱੜెؒͰؔ਺Ϛονϯά &⒎FDUJWFOFTTPGGVODUJPONBUDIJOH JOESJWJOHTDFOFSFDPHOJUJPO <:BTIJNB &$$78`> ϥϕϧͳ͠σʔλΛ༻͍ͯؔ਺Ϛονϯά ؔ਺Ϛονϯάͱͯ͠஌ࣝৠཹΛ࠶ߟ %*45 <)VBOH /FVS*14`> ΫϥεؒʹՃ͑ͯ Ϋϥε಺ͷ૬ؔΛసҠ 0GGMJOF %JTUJMMBUJPO 0OMJOF %JTUJMMBUJPO ஌ࣝΛసҠ ڭࢣ ੜె ΑΓଟ༷ͳ৘ใΛ࣋ͭ தؒ૚ͷग़ྗΛར༻ 'JU/FUT <3PNFSP *$-3`> தؒ૚ͷ஌ࣝͱͯ͠ ಛ௃ϚοϓΛ࢖༻ ɹɹɿύϥϝʔλΛݻఆ ɹɹɿύϥϝʔλΛߋ৽ ڭࢣɿֶशࡁΈϞσϧ ੜెɿະֶशͷϞσϧ ੜెͷΈΛ༻͍ͯ ੜెؒͰ஌ࣝΛసҠ ڭࢣͷ஌ࣝΛੜె΁సҠ ஌ࣝৠཹͷࣗಈઃܭ ஌ࣝసҠΛิॿ͢ΔϞσϧΛ௥Ճ 3FTJEVBM,% <(BP BS9JW`> ஌ࣝͷࠩΛิ׬͢Δ"TTJTUBOU ҟͳΔϞσϧߏ଄ؒͰ஌ࣝΛసҠ %FJ5 <5PVWSPO *$.-`> ஌ࣝͱͯ֬͠཰෼෍Λ༻͍ͯ $//͔Β7J5΁஌ࣝৠཹ 0OFGPS"MM <)BP /FVS*14`> தؒग़ྗΛMPHJUۭؒʹ౤Ө͢Δ͜ͱͰ ҟͳΔߏ଄ͷϞσϧؒͰதؒ૚ৠཹ ஌ࣝৠཹͷࣗಈઃܭ ,5( <.JOBNJ "$$7`> Ϟσϧͱଛࣦͷ૊Έ߹Θͤ 0SBDMF,OPXMFEHF%JTUJMMBUJPO <,BOH """*`> ΞϯαϯϒϧڭࢣͷͨΊͷੜెͷϞσϧߏ଄ Ϋϥεߏ੒΍λεΫ͕ҟͳΔෳ਺ͷڭࢣͷ஌ࣝΛੜెʹू໿ 4UVEFOUCFDPNJOHUIFNBTUFS <:F $713`> ηϚηάΛֶशͨ͠ڭࢣͱਂ౓ਪఆΛֶशͨ͠ڭࢣ "NBMHBNBUJOH,OPXMFEHF <4IFO """*`> ҟͳΔ෼ྨλεΫΛֶशͨ͠ෳ਺ͷڭࢣ ಛఆͷλεΫ ֶश Ϟσϧʹ͓͚Δ஌ࣝΛઃܭ $-*1,% <'BOH $713`> $-*1ɿ$-*1ʹ͓͍ͯ ैདྷͷ஌ࣝͷ༗ޮੑΛௐࠪ .JOJ7J5 <;IBOH $713`> 7JTJPO5SBOTGPSNFSɿ ΞςϯγϣϯॏΈͱύοντʔΫϯ .BOJGPME%JTUJMMBUJPO <)BP /FVS*14`> 7JTJPO5SBOTGPSNFSɿ ύονؒͷؔ܎ੑ -BSHFTDBMFJODSFNFOUBMMFBSOJOH <8V $713`> ܧଓֶशɿաڈλεΫͰ ֶशͨ͠Ϟσϧͷ֬཰෼෍ *NQSPWJOHGBTUTFHNFOUBUJPO XJUIUFBDIFSTUVEFOUMFBSOJOH <9JF #.7$`> ηϚηάɿۙ๣ͷϐΫηϧͱͷMPHJUؔ܎ 4&&% <'BOH *$-3`> ࣗݾڭࢣ͋Γֶशɿ αϯϓϧؒͷؔ܎ੑ -FBSOJOHF⒏DJFOUPCKFDUEFUFDUJPO NPEFMTXJUILOPXMFEHFEJTUJMMBUJPO <;BHPSVZLP *$-3`> ෺ମݕग़ɿ෺ମྖҬͷۣܗ ڭࢣ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ Ϟσϧͷ֫ಘͨ͠஌ࣝΛද͢஌ࣝදݱͱޮՌతͳ஌ࣝసҠͷଛࣦΛઃܭ ֬཰෼෍ MPHJU ಛ௃Ϛοϓ "UUFOUJPONBQ ͳͲ
  7. ஌ࣝৠཹͷਐలʢ44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹʣ  %BSL,OPXMFEHF ,OPXMFEHF%JTUJMMBUJPO <)JOUPO /*148`> ڭࢣͷ֬཰෼෍ʢ஌ࣝʣΛ ༻͍ͯੜెΛֶश .PEFMDPNQSFTTJPO <#VDJMV㶙

    4*(,%%`> Ξϯαϯϒϧͷग़ྗΛϥϕϧͱͯ͠ ͭͷχϡʔϥϧωοτϫʔΫΛֶश Ϟσϧͷ૊Έ߹Θͤ ஌ࣝͷछྨɾ஌ࣝͷసҠํ๏ ೥      44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹ ෳ਺ͷڭࢣʹΑΔΞϯαϯϒϧΛར༻ .VMUJQMF5FBDIFS <:PV ,%%`> ֬཰෼෍Λू໿ '&&% <1BSL,XBL &$"*`> ಛ௃ϚοϓΛू໿ ࣗ෼ࣗ਎ͷ஌ࣝΛར༻ TFMGEJTUJMMBUJPO ਂ͍૚ͷ஌ࣝΛઙ͍૚΁సҠ -FBSOJOHBVOJpFEDMBTTJpFS <)PV $713`> #FZPVSPXOUFBDIFS <;IBOH *$$7`> ෳ਺ͷੜెͷΈͰֶश %.- <;IBOH $713`> ੜెؒͷ஌ࣝৠཹʹΑΓਫ਼౓͕޲্ 0/& <-BO /FVSM14`> $PMMBCPSBUJWFMFBSOJOH <4POHˍ$IBJ /FVSM14`> ੜెͷઙ͍૚ΛॏΈڞ༗ͯ͠ύϥϝʔλ਺Λ࡟ݮ ஈ֊తʹ஌ࣝΛసҠ   7*% <"IO $713`> ૬ޓ৘ใྔ $3% <5JBO *$-3`> ରরֶश "'% <$IVOH *$.-`> ఢରతֶश ,OPXMFEHF%J⒎VTJPO <)VBOH /FVS*14`> ֦ࢄϞσϧͷֶशํ๏ ,OPXMFEHF3FWJFX <$IFO $713`> ҟͳΔਂ͞ͷ૚ͷؒͰ ஌ࣝΛసҠ .(% <:BOH &$$7`> ϚεΫͨ͠ੜెͷಛ௃Ϛοϓ͔Β ڭࢣͷಛ௃ϚοϓΛ༧ଌ தؒ૚ͷ஌ࣝͷసҠํ๏Λվળ 3,% <1BSL $713`> αϯϓϧؒͷؔ܎ੑ 'MPXPG4PMVUJPO1SPDFEVSF <:JN $713`> ૚ؒͷग़ྗͷ૬ޓؔ܎ "UUFOUJPO5SBOTGFS <;BHPSVZLP *$-3`> "UUFOUJPONBQ தؒ૚ͷग़ྗ͔Β஌ࣝΛநग़ ".3"%*0 <3BO[JOHFS $713`> ෳ਺ͷج൫Ϟσϧ %*/0W $-*1 4". ֶशΛૣظऴྃͨ͠ڭࢣΛར༻ 3$0 <+JO *$$7`> 0OUIFF⒏DBDZ <$IPˍ)BSJIBSBO *$$7`> ೳྗΪϟοϓ໰୊ʹରԠ "VUP,% <-J *$$7`> தؒ૚ͷ஌ࣝදݱ &OTFNCMF,5( <0LBNPUP &$$7`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ ,%;FSP <-J /FVS*14`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ -BSHFTDBMFEJTUSJCVUFE <"OJM *$-3`> ֬཰෼෍Λू໿ %VBMOFU <)PV *$$7`> ಛ௃ϚοϓΛू໿ ෳ਺ͷੜెʹΑΔΞϯαϯϒϧΛར༻ %BUBTFU%JTUJMMBUJPO <8BOH BS9JW`> ֶशࡁΈϞσϧͷਫ਼౓͕ߴ͘ͳΔ Α͏ʹೖྗϊΠζΛ࠷దԽ ͦͷଞɿσʔληοτͷৠཹ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ஌ࣝΛసҠ ڭࢣ ڭࢣ #"/ <'VSMBOFMMP *$.-`> 4NBMMˠ4NBMMˠʜ TFMGEJTUJMMBUJPO 5FBDIFS"TTJTUBOU <.JS[BEFI """*`> -BSHFˠ.JEEMFˠ4NBMM ʢೳྗΪϟοϓ໰୊ʹରԠʣ %BUBEJTUPSUJPOHVJEFETFMGEJTUJMMBUJPO <9VBOE-JV """*`> ݩσʔλ͕ಉ֦͡ுޙͷσʔλͷग़ྗΛ༧ଌ ʢσʔλ͔Βσʔλ΁ͷTFMGEJTUJMMBUJPOʣ ஌ࣝΛసҠ ੜె σʔλ ͭͷڭࢣͰΞϯαϯϒϧ %BUBEJTUJMMBUJPO <3BEPTBWPWJD $713`> σʔλ֦ுΛར༻ 1SFQBSJOH-FTTPOT <8FO /FVSPDPNQVUJOH`> ޡೝࣝͨ͠σʔλͷ஌ࣝͱ ෆ࣮֬ͳ஌ࣝΛௐ੔ (SBEVBM4BNQMJOH(BUF <.JOBNJ .7"`> ਖ਼ղͨ͠σʔλͷ ஌ࣝͷΈΛసҠ ग़ྗ૚ͷ஌ࣝͷసҠํ๏Λվળ 'VODUJPO.BUDIJOH <#FZFS $713`> NJYVQʹΑΔଟ༷ͳը૾Λ༻͍ͯ ڭࢣͱੜెؒͰؔ਺Ϛονϯά &⒎FDUJWFOFTTPGGVODUJPONBUDIJOH JOESJWJOHTDFOFSFDPHOJUJPO <:BTIJNB &$$78`> ϥϕϧͳ͠σʔλΛ༻͍ͯؔ਺Ϛονϯά ؔ਺Ϛονϯάͱͯ͠஌ࣝৠཹΛ࠶ߟ %*45 <)VBOH /FVS*14`> ΫϥεؒʹՃ͑ͯ Ϋϥε಺ͷ૬ؔΛసҠ 0GGMJOF %JTUJMMBUJPO 0OMJOF %JTUJMMBUJPO ஌ࣝΛసҠ ڭࢣ ੜె ΑΓଟ༷ͳ৘ใΛ࣋ͭ தؒ૚ͷग़ྗΛར༻ 'JU/FUT <3PNFSP *$-3`> தؒ૚ͷ஌ࣝͱͯ͠ ಛ௃ϚοϓΛ࢖༻ ɹɹɿύϥϝʔλΛݻఆ ɹɹɿύϥϝʔλΛߋ৽ ڭࢣɿֶशࡁΈϞσϧ ੜెɿະֶशͷϞσϧ ੜెͷΈΛ༻͍ͯ ੜెؒͰ஌ࣝΛసҠ ڭࢣͷ஌ࣝΛੜె΁సҠ ஌ࣝৠཹͷࣗಈઃܭ ஌ࣝసҠΛิॿ͢ΔϞσϧΛ௥Ճ 3FTJEVBM,% <(BP BS9JW`> ஌ࣝͷࠩΛิ׬͢Δ"TTJTUBOU ҟͳΔϞσϧߏ଄ؒͰ஌ࣝΛసҠ %FJ5 <5PVWSPO *$.-`> ஌ࣝͱͯ֬͠཰෼෍Λ༻͍ͯ $//͔Β7J5΁஌ࣝৠཹ 0OFGPS"MM <)BP /FVS*14`> தؒग़ྗΛMPHJUۭؒʹ౤Ө͢Δ͜ͱͰ ҟͳΔߏ଄ͷϞσϧؒͰதؒ૚ৠཹ ஌ࣝৠཹͷࣗಈઃܭ ,5( <.JOBNJ "$$7`> Ϟσϧͱଛࣦͷ૊Έ߹Θͤ 0SBDMF,OPXMFEHF%JTUJMMBUJPO <,BOH """*`> ΞϯαϯϒϧڭࢣͷͨΊͷੜెͷϞσϧߏ଄ Ϋϥεߏ੒΍λεΫ͕ҟͳΔෳ਺ͷڭࢣͷ஌ࣝΛੜెʹू໿ 4UVEFOUCFDPNJOHUIFNBTUFS <:F $713`> ηϚηάΛֶशͨ͠ڭࢣͱਂ౓ਪఆΛֶशͨ͠ڭࢣ "NBMHBNBUJOH,OPXMFEHF <4IFO """*`> ҟͳΔ෼ྨλεΫΛֶशͨ͠ෳ਺ͷڭࢣ ಛఆͷλεΫ ֶश Ϟσϧʹ͓͚Δ஌ࣝΛઃܭ $-*1,% <'BOH $713`> $-*1ɿ$-*1ʹ͓͍ͯ ैདྷͷ஌ࣝͷ༗ޮੑΛௐࠪ .JOJ7J5 <;IBOH $713`> 7JTJPO5SBOTGPSNFSɿ ΞςϯγϣϯॏΈͱύοντʔΫϯ .BOJGPME%JTUJMMBUJPO <)BP /FVS*14`> 7JTJPO5SBOTGPSNFSɿ ύονؒͷؔ܎ੑ -BSHFTDBMFJODSFNFOUBMMFBSOJOH <8V $713`> ܧଓֶशɿաڈλεΫͰ ֶशͨ͠Ϟσϧͷ֬཰෼෍ *NQSPWJOHGBTUTFHNFOUBUJPO XJUIUFBDIFSTUVEFOUMFBSOJOH <9JF #.7$`> ηϚηάɿۙ๣ͷϐΫηϧͱͷMPHJUؔ܎ 4&&% <'BOH *$-3`> ࣗݾڭࢣ͋Γֶशɿ αϯϓϧؒͷؔ܎ੑ -FBSOJOHF⒏DJFOUPCKFDUEFUFDUJPO NPEFMTXJUILOPXMFEHFEJTUJMMBUJPO <;BHPSVZLP *$-3`> ෺ମݕग़ɿ෺ମྖҬͷۣܗ ڭࢣ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ڭࢣϞσϧ ੜెϞσϧ MBSHFTNBMM ڭࢣϞσϧ ੜెϞσϧ ಉҰαΠζ ੜెϞσϧͷΈʢ૬ޓֶशʣ ڭࢣϞσϧ ڭࢣϞσϧ ڭࢣϞσϧ/ ੜెϞσϧ ෳ਺ͷڭࢣϞσϧ ڭࢣϞσϧ ੜెϞσϧ ੜెϞσϧ ஈ֊తͳৠཹ ੜెϞσϧ ੜెϞσϧ ੜెϞσϧ ੜెϞσϧ ੜెϞσϧ ͳͲ ޮՌతͳ஌ࣝసҠ͕ՄೳͳϞσϧؔ܎Λઃܭ
  8. ஌ࣝৠཹͷਐలʢ44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹʣ  %BSL,OPXMFEHF ,OPXMFEHF%JTUJMMBUJPO <)JOUPO /*148`> ڭࢣͷ֬཰෼෍ʢ஌ࣝʣΛ ༻͍ͯੜెΛֶश .PEFMDPNQSFTTJPO <#VDJMV㶙

    4*(,%%`> Ξϯαϯϒϧͷग़ྗΛϥϕϧͱͯ͠ ͭͷχϡʔϥϧωοτϫʔΫΛֶश Ϟσϧͷ૊Έ߹Θͤ ஌ࣝͷछྨɾ஌ࣝͷసҠํ๏ ೥      44**प೥ٕज़Ϛοϓɿ஌ࣝৠཹ ෳ਺ͷڭࢣʹΑΔΞϯαϯϒϧΛར༻ .VMUJQMF5FBDIFS <:PV ,%%`> ֬཰෼෍Λू໿ '&&% <1BSL,XBL &$"*`> ಛ௃ϚοϓΛू໿ ࣗ෼ࣗ਎ͷ஌ࣝΛར༻ TFMGEJTUJMMBUJPO ਂ͍૚ͷ஌ࣝΛઙ͍૚΁సҠ -FBSOJOHBVOJpFEDMBTTJpFS <)PV $713`> #FZPVSPXOUFBDIFS <;IBOH *$$7`> ෳ਺ͷੜెͷΈͰֶश %.- <;IBOH $713`> ੜెؒͷ஌ࣝৠཹʹΑΓਫ਼౓͕޲্ 0/& <-BO /FVSM14`> $PMMBCPSBUJWFMFBSOJOH <4POHˍ$IBJ /FVSM14`> ੜెͷઙ͍૚ΛॏΈڞ༗ͯ͠ύϥϝʔλ਺Λ࡟ݮ ஈ֊తʹ஌ࣝΛసҠ   7*% <"IO $713`> ૬ޓ৘ใྔ $3% <5JBO *$-3`> ରরֶश "'% <$IVOH *$.-`> ఢରతֶश ,OPXMFEHF%J⒎VTJPO <)VBOH /FVS*14`> ֦ࢄϞσϧͷֶशํ๏ ,OPXMFEHF3FWJFX <$IFO $713`> ҟͳΔਂ͞ͷ૚ͷؒͰ ஌ࣝΛసҠ .(% <:BOH &$$7`> ϚεΫͨ͠ੜెͷಛ௃Ϛοϓ͔Β ڭࢣͷಛ௃ϚοϓΛ༧ଌ தؒ૚ͷ஌ࣝͷసҠํ๏Λվળ 3,% <1BSL $713`> αϯϓϧؒͷؔ܎ੑ 'MPXPG4PMVUJPO1SPDFEVSF <:JN $713`> ૚ؒͷग़ྗͷ૬ޓؔ܎ "UUFOUJPO5SBOTGFS <;BHPSVZLP *$-3`> "UUFOUJPONBQ தؒ૚ͷग़ྗ͔Β஌ࣝΛநग़ ".3"%*0 <3BO[JOHFS $713`> ෳ਺ͷج൫Ϟσϧ %*/0W $-*1 4". ֶशΛૣظऴྃͨ͠ڭࢣΛར༻ 3$0 <+JO *$$7`> 0OUIFF⒏DBDZ <$IPˍ)BSJIBSBO *$$7`> ೳྗΪϟοϓ໰୊ʹରԠ "VUP,% <-J *$$7`> தؒ૚ͷ஌ࣝදݱ &OTFNCMF,5( <0LBNPUP &$$7`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ ,%;FSP <-J /FVS*14`> ஌ࣝͱଛࣦͷ૊Έ߹Θͤ -BSHFTDBMFEJTUSJCVUFE <"OJM *$-3`> ֬཰෼෍Λू໿ %VBMOFU <)PV *$$7`> ಛ௃ϚοϓΛू໿ ෳ਺ͷੜెʹΑΔΞϯαϯϒϧΛར༻ %BUBTFU%JTUJMMBUJPO <8BOH BS9JW`> ֶशࡁΈϞσϧͷਫ਼౓͕ߴ͘ͳΔ Α͏ʹೖྗϊΠζΛ࠷దԽ ͦͷଞɿσʔληοτͷৠཹ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ஌ࣝΛసҠ ڭࢣ ڭࢣ #"/ <'VSMBOFMMP *$.-`> 4NBMMˠ4NBMMˠʜ TFMGEJTUJMMBUJPO 5FBDIFS"TTJTUBOU <.JS[BEFI """*`> -BSHFˠ.JEEMFˠ4NBMM ʢೳྗΪϟοϓ໰୊ʹରԠʣ %BUBEJTUPSUJPOHVJEFETFMGEJTUJMMBUJPO <9VBOE-JV """*`> ݩσʔλ͕ಉ֦͡ுޙͷσʔλͷग़ྗΛ༧ଌ ʢσʔλ͔Βσʔλ΁ͷTFMGEJTUJMMBUJPOʣ ஌ࣝΛసҠ ੜె σʔλ ͭͷڭࢣͰΞϯαϯϒϧ %BUBEJTUJMMBUJPO <3BEPTBWPWJD $713`> σʔλ֦ுΛར༻ 1SFQBSJOH-FTTPOT <8FO /FVSPDPNQVUJOH`> ޡೝࣝͨ͠σʔλͷ஌ࣝͱ ෆ࣮֬ͳ஌ࣝΛௐ੔ (SBEVBM4BNQMJOH(BUF <.JOBNJ .7"`> ਖ਼ղͨ͠σʔλͷ ஌ࣝͷΈΛసҠ ग़ྗ૚ͷ஌ࣝͷసҠํ๏Λվળ 'VODUJPO.BUDIJOH <#FZFS $713`> NJYVQʹΑΔଟ༷ͳը૾Λ༻͍ͯ ڭࢣͱੜెؒͰؔ਺Ϛονϯά &⒎FDUJWFOFTTPGGVODUJPONBUDIJOH JOESJWJOHTDFOFSFDPHOJUJPO <:BTIJNB &$$78`> ϥϕϧͳ͠σʔλΛ༻͍ͯؔ਺Ϛονϯά ؔ਺Ϛονϯάͱͯ͠஌ࣝৠཹΛ࠶ߟ %*45 <)VBOH /FVS*14`> ΫϥεؒʹՃ͑ͯ Ϋϥε಺ͷ૬ؔΛసҠ 0GGMJOF %JTUJMMBUJPO 0OMJOF %JTUJMMBUJPO ஌ࣝΛసҠ ڭࢣ ੜె ΑΓଟ༷ͳ৘ใΛ࣋ͭ தؒ૚ͷग़ྗΛར༻ 'JU/FUT <3PNFSP *$-3`> தؒ૚ͷ஌ࣝͱͯ͠ ಛ௃ϚοϓΛ࢖༻ ɹɹɿύϥϝʔλΛݻఆ ɹɹɿύϥϝʔλΛߋ৽ ڭࢣɿֶशࡁΈϞσϧ ੜెɿະֶशͷϞσϧ ੜెͷΈΛ༻͍ͯ ੜెؒͰ஌ࣝΛసҠ ڭࢣͷ஌ࣝΛੜె΁సҠ ஌ࣝৠཹͷࣗಈઃܭ ஌ࣝసҠΛิॿ͢ΔϞσϧΛ௥Ճ 3FTJEVBM,% <(BP BS9JW`> ஌ࣝͷࠩΛิ׬͢Δ"TTJTUBOU ҟͳΔϞσϧߏ଄ؒͰ஌ࣝΛసҠ %FJ5 <5PVWSPO *$.-`> ஌ࣝͱͯ֬͠཰෼෍Λ༻͍ͯ $//͔Β7J5΁஌ࣝৠཹ 0OFGPS"MM <)BP /FVS*14`> தؒग़ྗΛMPHJUۭؒʹ౤Ө͢Δ͜ͱͰ ҟͳΔߏ଄ͷϞσϧؒͰதؒ૚ৠཹ ஌ࣝৠཹͷࣗಈઃܭ ,5( <.JOBNJ "$$7`> Ϟσϧͱଛࣦͷ૊Έ߹Θͤ 0SBDMF,OPXMFEHF%JTUJMMBUJPO <,BOH """*`> ΞϯαϯϒϧڭࢣͷͨΊͷੜెͷϞσϧߏ଄ Ϋϥεߏ੒΍λεΫ͕ҟͳΔෳ਺ͷڭࢣͷ஌ࣝΛੜెʹू໿ 4UVEFOUCFDPNJOHUIFNBTUFS <:F $713`> ηϚηάΛֶशͨ͠ڭࢣͱਂ౓ਪఆΛֶशͨ͠ڭࢣ "NBMHBNBUJOH,OPXMFEHF <4IFO """*`> ҟͳΔ෼ྨλεΫΛֶशͨ͠ෳ਺ͷڭࢣ ಛఆͷλεΫ ֶश Ϟσϧʹ͓͚Δ஌ࣝΛઃܭ $-*1,% <'BOH $713`> $-*1ɿ$-*1ʹ͓͍ͯ ैདྷͷ஌ࣝͷ༗ޮੑΛௐࠪ .JOJ7J5 <;IBOH $713`> 7JTJPO5SBOTGPSNFSɿ ΞςϯγϣϯॏΈͱύοντʔΫϯ .BOJGPME%JTUJMMBUJPO <)BP /FVS*14`> 7JTJPO5SBOTGPSNFSɿ ύονؒͷؔ܎ੑ -BSHFTDBMFJODSFNFOUBMMFBSOJOH <8V $713`> ܧଓֶशɿաڈλεΫͰ ֶशͨ͠Ϟσϧͷ֬཰෼෍ *NQSPWJOHGBTUTFHNFOUBUJPO XJUIUFBDIFSTUVEFOUMFBSOJOH <9JF #.7$`> ηϚηάɿۙ๣ͷϐΫηϧͱͷMPHJUؔ܎ 4&&% <'BOH *$-3`> ࣗݾڭࢣ͋Γֶशɿ αϯϓϧؒͷؔ܎ੑ -FBSOJOHF⒏DJFOUPCKFDUEFUFDUJPO NPEFMTXJUILOPXMFEHFEJTUJMMBUJPO <;BHPSVZLP *$-3`> ෺ମݕग़ɿ෺ମྖҬͷۣܗ ڭࢣ ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ ੜె ੜె ஌ࣝΛసҠ 8IBUUP%JTUJMM 'BTU,OPXMFEHF%JTUJMMBUJPOXJUI"EBQUJWF4BNQMJOH <$IBFBOE)FP *$$7`> ʢϋΠϥΠτ࿦จʣ ͜Ε·Ͱͷ஌ࣝৠཹ͸ʮڭࢣϞσϧͷ஌ࣝΛͲͷΑ͏ʹ఻͑Δ͔ʯʹয఺Λ౰͓ͯͯΓ ʮͲͷσʔλΛ࢖͏͔ʯʹ͍ͭͯे෼ʹߟྀ͞Ε͍ͯͳ͍
  9. w ஌ࣝͷྔͱ࣭Λఆٛ͠ɼྔͱ࣭͕஌ࣝৠཹʹ༩͑ΔӨڹΛͭͷ࣮ݧ͔Β෼ੳ w ෼ੳͷ܏޲ʹج͍ͮͯ,OPXMFEHF%JTUJMMBUJPOXJUI"EBQUJWF4BNQMJOH ,%"4 ΛఏҊ 8IBUUP%JTUJMM 'BTU,OPXMFEHF%JTUJMMBUJPOXJUI"EBQUJWF4BNQMJOH <$IBFBOE)FP *$$7`>

     Table 2. Comparison of knowledge distillation performance (Top-1 Accuracy, %) on CIFAR-100 across diverse teacher-student configu- rations. Both accuracy improvements (! Acc.) and training time reductions (! T.T.) are reported in the table. The underlined results are trained with a 20-epoch warm-up period. Teacher ResNet32x4 79.42 ResNet32x4 79.42 ResNet32x4 79.42 WRN-40-2 75.61 VGG13 74.64 WRN-40-2 75.61 ResNet56 72.34 ResNet110 74.31 ResNet110 74.31 Student SHN-V2 71.82 WRN-16-2 73.26 WRN-40-2 75.61 ResNet8x4 72.50 VGG8 70.36 WRN-40-1 71.98 ResNet20 69.06 ResNet32 71.14 ResNet20 69.06 KD [9] 74.45 74.9 77.7 73.97 72.98 73.54 70.66 73.08 70.67 KD + Ours 74.78 75.07 77.89 76.11 73.91 73.68 71.66 73.31 70.72 ! Acc. (%) +0.33 +0.17 +0.19 +2.14 +0.93 +0.14 +1.00 +0.23 +0.05 ! T.T. (%) -29.91 -26.54 -26.87 -29.54 -30.22 -29.14 -27.10 -28.11 -28.78 DKD [33] 77.07 75.7 78.46 75.56 74.68 74.81 71.97 74.11 71.06 DKD + Ours 77.17 76.43 78.65 75.76 74.75 74.97 71.97 74.12 71.81 ! Acc. (%) +0.10 +0.73 +0.19 +0.20 +0.07 +0.16 +0.00 +0.01 +0.75 ! T.T. (%) -10.35 -9.98 -10.67 -12.34 -12.75 -9.56 -8.79 -8.12 -9.20 LogitSTD [24] 75.56 75.26 77.92 77.11 74.36 74.37 71.43 74.17 71.48 LogitSTD + Ours 76.18 75.34 79.1 77.5 74.63 74.49 71.67 74.43 71.58 ! Acc. (%) +0.62 +0.08 +1.18 +0.39 +0.27 +0.12 +0.24 +0.26 +0.10 ! T.T. (%) -10.54 -10.01 -11.88 -12.16 -12.55 -9.67 -9.04 -8.99 -9.11 For quality-based loss weighting, we use percentile thresholds ωlow = 20 and ωhigh = 80 to define our optimal transfer window based on the KLTG distribution. We set the penalty factor ε = 0.5 as the minimum weight and penalty Table 3. Top-1 accuracy (%) on the ImageNet validation dataset. Improvements over the corresponding baseline are shown in !. ResNet34 ResNet50 ˠਫ਼౓Λվળ ϶"DD ͭͭ͠ɼֶश࣌ؒΛେ͖͘୹ॖ ϶55
  10. w ,%<)JOUPO /FVS*148`>ʹ͓͍ͯʮ஌ࣝͷྔɾ࣭ʯͱʮੜెϞσϧͷਫ਼౓ʯͷؔ܎Λ෼ੳ  σʔληοτɿ$*'"3 w ͭͷ؍఺͔Β࣮ݧΛߦ͍ɼੜెϞσϧͷਫ਼౓มԽΛௐࠪ  ஌ࣝͷྔʹΑΔӨڹ 

    ஌ࣝͷྔʹج͍ͮͨΧϦΩϡϥϜαϯϓϦϯά  ஌ࣝͷ࣭ʹΑΔӨڹ  ஌ࣝͷ࣭ʹج͍ͮͨϖφϧςΟ ஌ࣝͷྔͱ࣭͕஌ࣝৠཹʹ༩͑ΔӨڹ 
  11. w ϛχόον಺ͷσʔλʹରͯ͠ڭࢣϞσϧͱੜెϞσϧؒͷ,-EJWFSHFODFΛܭࢉ w ,-ͷ஋্͕ҐPSதԝPSԼҐͷσʔλ͔ΒɹˋͷσʔλΛৠཹʹ࢖༻ w ஌ࣝͷྔ͕ଟ͍σʔλ )JHI,- Λ࢖༻͢Δ͜ͱͰߴ͍ਫ਼౓Λൃش w ஌ࣝͷྔ͕গͳ͍σʔλ

    -PX,- ͸ৠཹ݁Ռʹ΄ͱΜͲӨڹΛ༩͑ͳ͍ ɹˠ͢΂ͯͷֶशσʔλΛৠཹʹ࢖༻͢Δඞཁ͸ͳ͍ ஌ࣝͷྔʹΑΔӨڹ  Analysis ng method for faster knowl- duct an empirical analysis of cs of data influence the ef- ation, defining two metrics: dge. easure the quantity and qual- ample. Our assumptions are: the KL divergence between els is large, it means that the owledge to transfer into the KL (PS ||PT ) 0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 90 100 Accuracy (%) Sampling Ratio (%) Low KL Mid KL High KL Baseline Ratio High KL 20% 72.42 % 40% 73.76 % 60% 73.69 % 80% 73.20 % 100% 73.14 % Figure 3. Performance of the student model when training on samples chosen according to the teacher-student KL divergence (Teacher: VGG13, Student: VGG8). Table 1. Accuracy of student model with different sampling met- rics in distillation (Sampling ratio: 50 %). ڭࢣϞσϧɿ7((ˠੜెϞσϧɿ7(( p
  12. w ஌ࣝͷྔ͕ଟ͍σʔλͷαϯϓϦϯά཰Λֶशதʹಈతʹมߋֶͯ͠श  ྫʣɿֶशεςοϓʹԠͯ͡ˋ͔Βˋʹঃʑʹݮগ w Ұ෦ͷઃఆͰ͸ݻఆʢ఺ઢʣΛ্ճΔਫ਼౓Λୡ੒ˠಈతͳݮগ͕༗ޮ w ͷઃఆ͕શͯͷڭࢣɾੜెͷ૊Έ߹Θͤʹ͓͍ͯ࠷΋ߴ͍ਫ਼౓Λୡ੒ ஌ࣝͷྔʹج͍ͮͨΧϦΩϡϥϜαϯϓϦϯά 

    Fixed Dynamic • 75.34 % 75.42 % ↭ 74.78 % 75.53 % ↫ 73.82 % 74.08 % ↬ 70.68 % 70.86 % Figure 4. Performance of the student model with fixed and dy- namic sampling ratios (Fixed sampling ratio: 50%). Index: •: ResNet32x4→ShuffleV2, ↭: WRN-40-2→ResNet8x4, ↫: VGG13→VGG8, ↬: ResNet56→ResNet20. Figure 5. Distribution of KL divergence between teacher and stu- dent models across different training epochs (early, middle, late). The distribution gradually shifts toward lower values as training progresses, but maintains a long tail of informative samples that our method selectively utilizes. Finding 2 (Curriculum Sampling). KD can achieve a superior performance by progressively changing the sampling ratio than using a fixed sampling ratio. Ratio M 60% 7 70% 7 80% 7 90% 7 100% 7 Figure 6. Performance of the student model when tra ples chosen according to the teacher-ground truth K (Teacher: VGG13, Student: VGG8). 4.2. Quality of Knowledge While the previous findings focus on the transferable knowledge, we also consider th the knowledge, based on our hypothesis that knowledge is more crucial for efficient knowle tion. We use the KL divergence between the ground-truth distributions to quantify the quali edge, similarly as the quantity of knowledge. Finding 3 (Quality Impact). KD can achie rable or even superior performance using on with mid teacher-ground truth KL divergence, to the performance achieved with all samples The third finding is that the student model ciently trained with samples with a higher quali edge. We assume the quality of knowledge b 69 70 71 72 73 74 75 76 77 90-10 80-20 70-30 60-40 50-50 Accuracy (%) Sampling Ratio (%) Fixed Dynamic • 75.34 % 75.42 % ↭ 74.78 % 75.53 % ↫ 73.82 % 74.08 % ↬ 70.68 % 70.86 % Figure 4. Performance of the student model with fixed and dy- namic sampling ratios (Fixed sampling ratio: 50%). Index: •: ResNet32x4→ShuffleV2, ↭: WRN-40-2→ResNet8x4, ↫: VGG13→VGG8, ↬: ResNet56→ResNet20. Figure 6. Performance of the stu ples chosen according to the te (Teacher: VGG13, Student: VG 4.2. Quality of Knowledg
  13. w ϛχόον಺ͷσʔλʹରͯ͠ڭࢣϞσϧͱਖ਼ղϥϕϧؒͷ,-EJWFSHFODFΛܭࢉ w ,-ͷ஋্͕ҐPSதԝPSԼҐͷσʔλ͔ΒɹˋͷσʔλΛৠཹʹ࢖༻ w ஌ࣝͷ࣭͕ߴ͍σʔλ .JE,- Λ࢖༻͢Δ͜ͱͰߴ͍ਫ਼౓Λൃش ɹˠ࠷దͳ஌ࣝৠཹ͸ʮਖ਼ղϥϕϧͱద౓ʹҟͳΔʹ௥Ճ৘ใʢ஌ࣝʣΛؚΉʯ͔ͭ ɹɹʮਖ਼ղͱे෼ʹ੔߹ʯ͍ͯ͠ΔಛఆͷྖҬͰൃੜ

    ஌ࣝͷ࣭ʹΑΔӨڹ  Fixed Dynamic • 75.34 % 75.42 % ↭ 74.78 % 75.53 % ↫ 73.82 % 74.08 % ↬ 70.68 % 70.86 % udent model with fixed and dy- pling ratio: 50%). 2, ↭: WRN-40-2→ResNet8x4, 6→ResNet20. 49 52 55 58 61 64 67 70 73 10 20 30 40 50 60 70 80 90 100 Accuracy (%) Sampling Ratio (%) Low KL Mid KL High KL Baseline Ratio Mid KL 60% 72.86 % 70% 73.11 % 80% 73.34 % 90% 73.29 % 100% 73.14 % Figure 6. Performance of the student model when training on sam- ples chosen according to the teacher-ground truth KL divergence (Teacher: VGG13, Student: VGG8). 4.2. Quality of Knowledge ڭࢣϞσϧɿ7((ˠੜెϞσϧɿ7(( p
  14. w ஌ࣝͷ࣭͕௿͍σʔλΛ༻͍ͨଛࣦʹখ͍͞஋ΛॏΈ෇͚ͯ͠ৠཹ  ॏΈ෇͚ͷৄࡉ͸࣍ϖʔδҎ߱Ͱ঺հ w ॏΈ෇͚Λಋೖͨ͠ৠཹ͕Ұ؏ͯ͠௨ৗͷৠཹ 7BOJMMB,% Λ্ճΔਫ਼౓Λୡ੒ ஌ࣝͷ࣭ʹج͍ͮͨϖφϧςΟ 

    68 69 70 71 72 73 74 75 76 77 ResNet32x4->SHN-V2 WRN-40-2->ResNet8x4 VGG13->VGG8 ResNet56->ResNet20 Accuracy (%) Model Vanilla KD KD with Penalization ResNet32x4 →Shuffle-V2 WRN-40-2 →ResNet8x4 VGG13 →VGG8 ResNet56 →ResNet20 Figure 7. Performance comparison between vanilla KD and KD with our penalization approach across different pairs of teacher and student models (with the full dataset). The consistent perfor- mance improvements demonstrate the effectiveness of penalizing samples with suboptimal knowledge quality. 5. Faster Knowled Building on our finding an efficient adaptive sa distillation efficiency w performance. This met of knowledge with two pling and quality-calibr 5.1. Quantity-based To maximize the effic on Findings 1 and 2, K quantity of knowledge gence (KLT S ). For eve K% samples with the h
  15. w ͭͷ࣮ݧ݁Ռʹج͍ͮͯৠཹޮ཰ΛߴΊͭͭɼਫ਼౓Λҡ࣋ɾ޲্ͤ͞Δ,%"4ΛఏҊ  ʮྔʹج͍ͮͨσʔλαϯϓϦϯάʯͱʮ࣭ʹج͍ͮͨଛࣦॏΈ෇͚ʯ͔Βߏ੒ w ɹΤϙοΫ͝ͱʹσʔληοτɹɹ͔Β஌ࣝͷྔɹɹ͕ߴ্͍ҐɹͷσʔλΛબ୒ w બ୒ͨ͠σʔλΛֶशσʔλͱͯ͠ৠཹʹ࢖༻ ,OPXMFEHF%JTUJMMBUJPOXJUI"EBQUJWF4BNQMJOH ,%"4

     D(t) sub = {x ∈ Dorg |KLTS (x) > PK(t) (KLTS (Dorg ))} τ Dorg KLTS K(t) K(t) = max(Kmin , Kinit − α ⋅ t) ΤϙοΫ໨ͷֶशσʔλɿ t ΤϙοΫ໨ͷαϯϓϦϯά཰ɿ t αϯϓϦϯά཰͸ΤϙοΫ਺ʹԠͯ͡ঃʑʹݮগ ύʔηϯλΠϧ K(t) ,% 0VST ɹαϯϓϦϯάִؒɿ͔ΒΤϙοΫʹ૿Ճ ɹαϯϓϦϯά཰ɹɿ͔Βʹݮগ %,% 0VST ɹαϯϓϦϯάִؒɿ͔ΒΤϙοΫʹ૿Ճ ɹαϯϓϦϯά཰ɹɿ͔Βʹݮগ -PHJU45% 0VST ɹαϯϓϦϯάִؒɿ͔ΒΤϙοΫʹ૿Ճ ɹαϯϓϦϯά཰ɹɿ͔Βʹݮগ ධՁ࣮ݧͰͷઃఆ
  16. w ͭͷ࣮ݧ݁Ռʹج͍ͮͯৠཹޮ཰ΛߴΊͭͭɼਫ਼౓Λҡ࣋ɾ޲্ͤ͞Δ,%"4ΛఏҊ  ʮྔʹج͍ͮͨσʔλαϯϓϦϯάʯͱʮ࣭ʹج͍ͮͨଛࣦॏΈ෇͚ʯ͔Βߏ੒ w ஌ࣝͷ࣭ɹɹ͕͖͍͠஋ΑΓ௿͍ɾߴ͍σʔλͷଛࣦ஋ʹΑΓখ͍͞஋ΛॏΈ෇͚ ,OPXMFEHF%JTUJMMBUJPOXJUI"EBQUJWF4BNQMJOH ,%"4  KLGT

    w(x) = max(γ, 1 − λ ⋅ (θlow − KLTG(x))), if KLTG(x) < θlow max(γ, 1 − λ ⋅ (KLTG(x) − θhigh )), if KLTG(x) > θhigh 1, otherwise ͖͍͠஋ͱͷ͕ࠩେ͖͍΄Ͳখ͍͞஋ʹઃఆ ධՁ࣮ݧͰͷઃఆ ɿ θlow θhighɿ ɿ γ ɿ λ
  17. w σʔληοτɿ$*'"3 ධՁ࣮ݧ<>  ˠਫ਼౓Λվળ ϶"DD ͭͭ͠ɼֶश࣌ؒΛେ͖͘୹ॖ ϶55 $//ˠ$// 3FT/FUˠ7J5ܥϞσϧ

    Table 2. Comparison of knowledge distillation performance (Top-1 Accuracy, %) on CIFAR-100 across diverse teacher-student configu- rations. Both accuracy improvements (! Acc.) and training time reductions (! T.T.) are reported in the table. The underlined results are trained with a 20-epoch warm-up period. Teacher ResNet32x4 79.42 ResNet32x4 79.42 ResNet32x4 79.42 WRN-40-2 75.61 VGG13 74.64 WRN-40-2 75.61 ResNet56 72.34 ResNet110 74.31 ResNet110 74.31 Student SHN-V2 71.82 WRN-16-2 73.26 WRN-40-2 75.61 ResNet8x4 72.50 VGG8 70.36 WRN-40-1 71.98 ResNet20 69.06 ResNet32 71.14 ResNet20 69.06 KD [9] 74.45 74.9 77.7 73.97 72.98 73.54 70.66 73.08 70.67 KD + Ours 74.78 75.07 77.89 76.11 73.91 73.68 71.66 73.31 70.72 ! Acc. (%) +0.33 +0.17 +0.19 +2.14 +0.93 +0.14 +1.00 +0.23 +0.05 ! T.T. (%) -29.91 -26.54 -26.87 -29.54 -30.22 -29.14 -27.10 -28.11 -28.78 DKD [33] 77.07 75.7 78.46 75.56 74.68 74.81 71.97 74.11 71.06 DKD + Ours 77.17 76.43 78.65 75.76 74.75 74.97 71.97 74.12 71.81 ! Acc. (%) +0.10 +0.73 +0.19 +0.20 +0.07 +0.16 +0.00 +0.01 +0.75 ! T.T. (%) -10.35 -9.98 -10.67 -12.34 -12.75 -9.56 -8.79 -8.12 -9.20 LogitSTD [24] 75.56 75.26 77.92 77.11 74.36 74.37 71.43 74.17 71.48 LogitSTD + Ours 76.18 75.34 79.1 77.5 74.63 74.49 71.67 74.43 71.58 ! Acc. (%) +0.62 +0.08 +1.18 +0.39 +0.27 +0.12 +0.24 +0.26 +0.10 ! T.T. (%) -10.54 -10.01 -11.88 -12.16 -12.55 -9.67 -9.04 -8.99 -9.11 For quality-based loss weighting, we use percentile thresholds ωlow = 20 and ωhigh = 80 to define our optimal transfer window based on the KLTG distribution. We set the penalty factor ε = 0.5 as the minimum weight and penalty intensity ϑ = 1000. The temperature parameter is set to 4 for all KD methods unless otherwise specified. 6.2. Distillation Efficiency Table 3. Top-1 accuracy (%) on the ImageNet validation dataset. Improvements over the corresponding baseline are shown in !. Teacher ResNet34 73.31 ResNet50 76.16 Student ResNet18 69.75 MobileNetV1 68.87 KD [9] 71.03 70.50 Table 4. Top-1 accuracy (%) of various vision transformer models on CIFAR-100 with ResNet56 as the teacher model. Improve- ments over the corresponding baseline are shown in !. Metric DeiT-Ti T2T-ViT7 PiT-Ti PVT-Ti Size 5M 4M 5M 13M Accuracy 65.08 69.37 73.58 69.22 AT [32] 73.51 74.01 76.03 74.66 LG [14] 78.15 78.35 78.48 77.07 AutoKD [15] 78.58 78.62 78.51 77.48 LogitSTD [24] 78.55 78.43 78.76 78.43 KD [9] 73.25 74.15 75.47 73.60 KD + Ours 77.81 76.39 76.87 76.31 ! Acc., (%) +4.56 +2.24 +1.40 +2.71 ! T.T. (%) -25.51 -25.42 -24.98 -25.16 Table 5. Impact of different KDAS components on CIFAR-100 with VGG13→VGG8. (CS: Curriculm Sampling; PN: Quality- based Penalization). Vanilla Subsampling CS PN Opt. Acc. Training time ↭ 73.14 100 % ↭ ↭ 73.82 +0.68 ↭ ↭ ↭ 74.08 +0.94 -12.45 % ↭ ↭ ↭ ↭ 74.12 +0.98 ↭ ↭ ↭ ↭ ↭ 73.91 +0.77 -30.22 % Results with Vision Transformers. To verify the effec- tiveness of KDAS on modern architectures, we apply the approach to various vision transformer models on CIFAR- Fi sa 6. Fi fe el in Table S1. Hyperparameter Exploration ω ε ϑ low ϑ high VGG13 → VGG8 WRN40 → Res8↑4 1000 0.5 20 80 73.91 76.11 1500 0.5 20 80 73.42 75.54 2000 0.5 20 80 73.38 75.41 1000 0.1 20 80 73.55 75.40 1000 0.3 20 80 73.89 75.63 1000 0.7 20 80 73.85 76.00 1000 0.5 10 80 73.88 76.04 1000 0.5 30 80 73.71 75.75 1000 0.5 40 80 73.44 75.55 The hyperparameters for quality-based calibration used in our experiments (ω = 1000, ε = 0.5, ϑlow = 20, ϑhigh = 80) are found to work robustly across KD meth- ods and model architectures. B. Generalizability B.1. Application to Vision Transformers We apply KDAS to vision transformers in combination with a recent knowledge distillation method, LogitSTD. Table S2 shows the top-1 accuracy (%) of four vision transformer models on CIFAR-100 with ResNet56 as the teacher model. Table S2. Application to Vision Transformers Method DeiT-Ti T2T-ViT7 PiT-Ti PVT-Ti LogitSTD 78.55 78.43 78.76 78.43 LogitSTD + KDAS 77.43 77.98 78.86 77.63 ! Accuracy -1.12% -0.45% +0.1% -0.8% ! Training Time -15.41% -15.40% -14.63% -15.54% KDAS improves both accuracy and training efficiency for PiT-Ti only, implying that other transformer models may require more data to benefit from LogitSTD. T beyo C. C To j com verg pling racy fixed D. C We meth chite redu T S K UN T UNI tions KDA
  18. ධՁ࣮ݧ<>  Ϋϥε෼ྨɿ*NBHF/FU, Fast Knowledge Distillation with Adaptive Sampling Supplementary

    Material n .e., the initial and final ubsampling. Once they hod such as vanilla KD or different model archi- the paper. s (i.e., ω, ε, ϑlow , ϑhigh ) mpirically tune these hy- h on CIFAR-100. Ta- n the effects of the hy- Exploration GG8 WRN40 → Res8↑4 76.11 B.2. Application to Object Detection We further apply KDAS to the object detection task with the PASCAL VOC dataset. We target the backbone network of an object detection model, Faster R-CNN, for distillation. Table S3 summarizes the accuracy and training time reduc- tions for each teacher and student pair. Table S3. Application to Object Detection (Metric: mAP) T → S KD KD + KDAS DKD DKD + KDAS R101 → R18 39.23 39.97 (-9.09%) 38.04 38.32 (-9.06%) R50 → MV2 36.14 36.13 (-9.10%) 35.15 35.91 (-9.06%) The results demonstrate a broader applicability of KDAS beyond the classification task. ෺ମݕग़ɿ1"4$"-70$ 'BTUFS3$// +0.73 +0.19 +0.20 +0.07 +0.16 +0.00 +0.01 +0.75 -9.98 -10.67 -12.34 -12.75 -9.56 -8.79 -8.12 -9.20 75.26 77.92 77.11 74.36 74.37 71.43 74.17 71.48 75.34 79.1 77.5 74.63 74.49 71.67 74.43 71.58 +0.08 +1.18 +0.39 +0.27 +0.12 +0.24 +0.26 +0.10 -10.01 -11.88 -12.16 -12.55 -9.67 -9.04 -8.99 -9.11 ghting, we use percentile = 80 to define our optimal LTG distribution. We set the inimum weight and penalty erature parameter is set to 4 rwise specified. Table 2 presents the top-1 ods with and without our 00 across diverse teacher- S consistently improves ac- time across all configura- KD [9], our method achieves approximately 28% faster ation depending on teacher eems that the performance lly affected by whether the n the same architecture fam- ent relationship between the ning time reduction. h as DKD [33] and Logit- consistent performance en- raining time reduction. As ng method more conserva- on is smaller compared with s modifies the loss function y give a different impact. at our approach is not only method but also complemen- methods, highlighting the ptive sampling method. Table 3. Top-1 accuracy (%) on the ImageNet validation dataset. Improvements over the corresponding baseline are shown in !. Teacher ResNet34 73.31 ResNet50 76.16 Student ResNet18 69.75 MobileNetV1 68.87 KD [9] 71.03 70.50 KD + Ours 71.35 70.86 ! Acc., T.T. (%) +0.22 -36.23 +0.36 -35.81 DKD [33] 71.70 72.05 DKD + Ours 71.81 72.49 ! Acc., T.T. (%) +0.11 -15.01 +0.44 -14.74 LogitSTD [24] 71.42 72.18 LogitSTD + Ours 71.48 72.21 ! Acc., T.T. (%) +0.06 -15.27 +0.03 -15.01 Results with ImageNet. On the large-scale ImageNet dataset, as shown in Table 3, KDAS maintains its effec- tiveness for practical teacher-student combinations. For the both pairs, our approach improves the accuracy of the stu- dent models while reducing the distillation time by over 35%. With the advanced methods, KDAS continues to en- hance performance with approximately 15% faster training. The training time reduction is larger because KDAS can more efficiently subsample the bigger dataset. These results show that our approach scales well to a larger dataset where the computational efficiency is partic- ularly more valuable. KD [9] 73.25 74.15 75.47 73.60 KD + Ours 77.81 76.39 76.87 76.31 ! Acc., (%) +4.56 +2.24 +1.40 +2.71 ! T.T. (%) -25.51 -25.42 -24.98 -25.16 Table 5. Impact of different KDAS components on CIFAR-100 with VGG13→VGG8. (CS: Curriculm Sampling; PN: Quality- based Penalization). Vanilla Subsampling CS PN Opt. Acc. Training time ↭ 73.14 100 % ↭ ↭ 73.82 +0.68 ↭ ↭ ↭ 74.08 +0.94 -12.45 % ↭ ↭ ↭ ↭ 74.12 +0.98 ↭ ↭ ↭ ↭ ↭ 73.91 +0.77 -30.22 % Results with Vision Transformers. To verify the effec- tiveness of KDAS on modern architectures, we apply the approach to various vision transformer models on CIFAR- 100. Table 4 summarizes the accuracy and training time improvement with the vanilla KD, comparing with other knowledge distillation methods. These results highlight that KDAS effectively bridges the architectural gap between the CNN-based teacher (ResNet56) and the transformer-based students while providing accuracy gains with improved dis- tillation efficiency. 6.3. Ablation Study Table 5 presents a systematic analysis of the contribution of each KDAS component. The quantity-based subsampling alone yields a 0.68% accuracy improvement while reducing training time by 12.45%. Incorporating curriculum sam- pling enhances accuracy further by 0.94%, demonstrating the value of adaptive sample prioritization. The quality- Figure 8. Training an samples grouped by t 6.4. Impact of K Figure 8 illustrates ferent KL divergenc elevated initial loss ing, yet yield supe from their rich info cision boundaries th tion capacity. Con training convergenc ing they capture sim tion but inadequate information-theoret sampling strategy, offering optimal kn 7. Conclusion This work conduc of data in knowled (i) quantity of kno $4ɿྔʹج͍ͮͨΧϦΩϡϥϜαϯϓϦϯάɹ1/ɿ࣭ʹج͍ͮͨଛࣦॏΈ෇͚ 0QUɿPVSPQUJNJ[BUJPOUFDIOJRVFT "CMBUJPO4UVEZɿ$*'"3 ਫ਼౓ͱֶश࣌ؒͷؔ܎ɿ$*'"3 3FT/FUˠ3FT/FU What to Distill? Fast Knowledge Distillation with Adaptive Sampling Byungchul Chae Kyung Hee University; SqueezeBits Inc. [email protected] Seonyeong Heo Kyung Hee University [email protected] Abstract Knowledge Distillation (KD) has been established as an effective technique for reducing the resource requirements of models when tackling computer vision tasks. Prior work has studied how to distill the knowledge of a teacher model better, but it overlooks how data affects the distillation re- sult. This work examines the impact of data in knowledge distillation from two perspectives: (i) quantity of knowledge and (ii) quality of knowledge. Our examination finds that faster knowledge distillation can be achieved by using data KD FitNet RKD CRD OFD ReviewKD DKD LogitSTD KD+Ours LogitSTD+Ours 70.5 71 71.5 72 72.5 73 73.5 74 74.5 75 0 1 2 3 4 5 6 Accuracy (%) Relative Training Time Figure 1. Average training time (relative to vanilla KD [9]) vs. top-1 accuracy on CIFAR-100. We set ResNet110 as the teacher
  19. w ஌ࣝৠཹ  ύϥϝʔλ਺ͷେֶ͖͍शࡁΈϞσϧͷ஌ࣝΛύϥϝʔλ਺ͷগͳ͍Ϟσϧ΁సҠ͢Δ͜ͱͰѹॖ  ஌ࣝͷछྨɼ஌ࣝసҠͷଛࣦɼϞσϧͷ૊Έ߹Θͤͷ؍఺͔Β༷ʑͳৠཹख๏͕ొ৔ w 8IBUUP%JTUJMM 'BTU,OPXMFEHF%JTUJMMBUJPOXJUI"EBQUJWF4BNQMJOH 

    ৠཹͷ໰୊఺ɿʮσʔλʯͱʮੜెϞσϧͷਫ਼౓ʯͷؔ܎ʹ͍ͭͯे෼ʹٞ࿦͞Ε͍ͯͳ͍  ෼ੳɾௐࠪɹɿ஌ࣝͷྔͱ࣭Λఆٛ͠ɼྔͱ࣭͕஌ࣝৠཹʹ༩͑ΔӨڹΛͭͷ࣮ݧ͔Β෼ੳ  Ξϓϩʔνɹɿʮྔʹج͍ͮͨσʔλαϯϓϦϯάʯͱʮ࣭ʹج͍ͮͨଛࣦॏΈ෇͚ʯΛఏҊ  ධՁ࣮ݧɹɹɿਫ਼౓Λվળͭͭ͠ɼֶश࣌ؒΛେ͖͘୹ॖ ·ͱΊ