Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Crypto in CTF] Bleichenbacher RSA Signature Fo...
Search
oalieno
October 31, 2020
Technology
0
570
[Crypto in CTF] Bleichenbacher RSA Signature Forgery
https://github.com/oalieno/Crypto-Course/tree/master/RSA
oalieno
October 31, 2020
Tweet
Share
More Decks by oalieno
See All by oalieno
[Crypto in CTF] Classical Cipher
oalieno
0
410
[Crypto in CTF] Block Cipher Mode
oalieno
0
950
[Crypto in CTF] HASH
oalieno
0
250
[Crypto in CTF] LFSR
oalieno
0
470
[Crypto in CTF] RSA
oalieno
0
660
[Crypto in CTF] Blockchain Security
oalieno
0
390
滲透測試基本技巧與經驗分享
oalieno
2
1.1k
Other Decks in Technology
See All in Technology
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
120
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
1
430
Kiroから考える AIコーディングツールの潮流
oikon48
4
680
専門分化が進む分業下でもユーザーが本当に欲しかったものを追求するプロダクトマネジメント/Focus on real user needs despite deep specialization and division of labor
moriyuya
1
1.2k
Vision Language Modelと自動運転AIの最前線_20250730
yuyamaguchi
3
1.2k
生成AI時代におけるAI・機械学習技術を用いたプロダクト開発の深化と進化 #BetAIDay
layerx
PRO
1
1.1k
マルチモーダル基盤モデルに基づく動画と音の解析技術
lycorptech_jp
PRO
5
580
Foundation Model × VisionKit で実現するローカル OCR
sansantech
PRO
1
330
2時間で300+テーブルをデータ基盤に連携するためのAI活用 / FukuokaDataEngineer
sansan_randd
0
140
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
6
890
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
130
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
380
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
184
22k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Thoughts on Productivity
jonyablonski
69
4.8k
For a Future-Friendly Web
brad_frost
179
9.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
GraphQLとの向き合い方2022年版
quramy
49
14k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
Transcript
Bleichenbacher RSA Signature Forgery ( 2006 ) oalieno
PKCS
PKCS • PKCS ( Public Key Cryptography Standards ) 是公鑰密碼標準
• 制定了了⼀一系列列從 PKCS#1 到 PKCS#15 的標準 • 其中 PKCS#1 是 RSA Cryptography Standard
ASN.1 • ASN.1 是⾼高階的抽象標準 • 具體的實作編碼規則有 : BER, CER, DER,
PER, XER
PKCS#1 1.5 Signature https://tools.ietf.org/html/rfc2313 Step 1 : Message Digest M
H(M) HASH Sign
• ASN.1 是編碼數據的格式,這裡紀錄了了使⽤用的 hash 演算法 H(M) ASN.1 01 FF …
00 FF D = 00 padding Step 2 : Data Encoding Sign PKCS#1 1.5 Signature https://tools.ietf.org/html/rfc2313
Step 3 : RSA encryption D d % n =
S Sign PKCS#1 1.5 Signature https://tools.ietf.org/html/rfc2313
Step 1 : RSA decryption Verify S e % n
= D PKCS#1 1.5 Signature https://tools.ietf.org/html/rfc2313
Step 2 : Data Decoding Verify • 需要 parse 這個格式取出
H(M) • 這個標準沒有說要怎麼 parse • 如果 e 太⼩小且沒有正確的 parse,就有機會偽造簽章 H(M) ASN.1 01 FF … 00 FF D = 00 PKCS#1 1.5 Signature https://tools.ietf.org/html/rfc2313
Step 3 : Message digesting and comparison M' H(M)' H(M)
Verify compare PKCS#1 1.5 Signature https://tools.ietf.org/html/rfc2313
Bleichenbacher RSA Signature Forgery ( 2006 )
Bleichenbacher RSA Signature Forgery ( 2006 ) https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE • ⼜又稱作
BB06 • 針對 PKCS#1 1.5 ( RFC 2313 ) • RSA 簽章偽造 06
Bleichenbacher RSA Signature Forgery ( 2006 ) https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE • 實作缺陷
: 可以有多餘的字元在後⾯面 • parse 的時候直接取出後⾯面固定長度的 H(M) • 沒有檢查後⾯面還有沒有東⻄西 H(M) ASN.1 01 FF … 00 FF 00 Garbage
• 在 e = 3 的情況下可以 forge signature • 嘗試構造
ED 讓 ED 的三次⽅方不超過 n 且滿⾜足以下格式 S 3 % n = H(M) ASN.1 01 FF … 00 FF 00 Garbage Bleichenbacher RSA Signature Forgery ( 2006 ) https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE
H(M) ASN.1 01 FF … 00 FF Garbage 00 D
( length d ) G ( length g ) 2t−15 G + total length t (x + y)3 x3 3x2y + 2g ⋅ D + −2d+g 3xy2 y3 + + = Bleichenbacher RSA Signature Forgery ( 2006 ) https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE
x = 2t − 15 3 y = (D −
2d) ⋅ 2g 3 ⋅ 22(t − 15) 3 Bleichenbacher RSA Signature Forgery ( 2006 ) https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE
x = 21019 y = (D − 2288) ⋅ 234
3 • 假設 • Key 長度為 3072 bit • Garbage 長度為 2072 bit • 使⽤用 SHA-1 的話,D 的長度是 288 bit • 最後 ED = x + y 就是我們構造出的合法簽章 Bleichenbacher RSA Signature Forgery ( 2006 ) https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE
RSA Signature Forgery in python-rsa ( 2016 ) CVE-2016-1494
RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/ •
實作缺陷 : padding bytes 可以是任意字元 直接取第⼆二個 0x00 沒有檢查中間的 padding bytes
• 在 e = 3 的情況下可以 forge signature • 嘗試構造
ED 讓 ED 的三次⽅方不超過 n 且滿⾜足以下格式 • ED3 的後綴是 ASN.1 + H(M) • ED3 的前綴是 \x00\x01 H(M) ASN.1 01 ?? … 00 ?? 00 S 3 % n = RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
0 S S3 ⽬目標 0 0 1 0 0 0
1 1 1 0 1 match RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
0 S S3 ⽬目標 0 0 1 0 0 0
1 1 1 0 1 match RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
0 S S3 ⽬目標 0 0 1 0 0 0
1 1 1 0 1 mismatch RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
0 S S3 ⽬目標 1 0 1 1 1 0
1 1 1 0 1 match RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
0 S S3 ⽬目標 1 0 1 1 1 0
1 1 1 0 1 match RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
0 S S3 ⽬目標 1 0 1 1 1 0
1 1 1 0 1 01013 = 1111101 RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
01 … … 00 3 = 92 3f … 68
04 bc 28 76 e4 50 … = 3 • 要讓 ED3 的前綴是 \x00\x01 只要把 \x00\x01... 開三次⽅方 • 最後再把開完三次⽅方的值的後綴換成前⾯面算出來來的後綴 • 就可以成功⾃自⼰己構造合法簽章了了 RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
H(M) ASN.1 01 ?? … 00 ?? 00 92 3f
… bc 28 3 = RSA Signature Forgery in python-rsa ( 2016 ) https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
A Decade After Bleichenbacher '06, RSA Signature Forgery Still Works
( 2019 )
A Decade After Bleichenbacher '06, RSA Signature Forgery Still Works
( 2019 ) https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works.pdf • 整個格式固定是 n 這麼長 • ⽤用 Symbolic Execution 去找到可以任意亂塞的部分有多長
A Decade After Bleichenbacher '06, RSA Signature Forgery Still Works
( 2019 ) https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works.pdf • 實作缺陷 : padding bytes 可以是任意字元 H(M) ASN.1 01 ?? … 00 ?? 00 CVE-2018-15836 Openswan 2.6.50
CVE-2018-16152 strongSwan 5.6.3 A Decade After Bleichenbacher '06, RSA Signature
Forgery Still Works ( 2019 ) https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works.pdf • 實作缺陷 : • Algorithm Parameter 可以是任意字元 • Algorithm OID 後⾯面可以有多餘的字元 H(M) 01 FF … 00 FF 00 ASN.1 00 03 20 03 0c Algorithm Parameter 04 10 Algorithm OID
CVE-2018-16150 axTLS 2.1.3 A Decade After Bleichenbacher '06, RSA Signature
Forgery Still Works ( 2019 ) https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works.pdf • 實作缺陷 : • 可以有多餘的字元在後⾯面 • Algorithm Identifier 可以是任意字元 H(M) 01 FF … 00 FF 00 ASN.1 00 03 20 03 0c Algorithm Identifier 04 10 Garbage
Defense against RSA Signature Forgery
How to defense? • ⽤用其他的簽章演算法,比如說 ECDSA • ⽤用更更⼤大的 e,比如 65537
• parsing based → comparison based H(M) ASN.1 01 FF … 00 FF 00 H(M) ASN.1 01 FF … 00 FF 00 compare