Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
39
2.4k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
4
1k
Contracts for building reliable systems
keathley
5
790
Kafka, the hard parts
keathley
2
1.6k
Building Resilient Elixir Systems
keathley
6
2.1k
Consistent, Distributed Elixir
keathley
5
1.5k
Telling stories with data visualization
keathley
0
570
Easing into continuous deployment
keathley
1
340
Leveling up your git skills
keathley
0
710
Generative Testing in Elixir
keathley
0
480
Other Decks in Programming
See All in Programming
Vue.jsでiOSアプリを作る方法
hal_spidernight
0
130
Terraform で作る Amazon ECS の CI/CD パイプライン
hiyanger
0
130
Rubyでつくるパケットキャプチャツール
ydah
1
670
[JAWS-UG横浜 #80] うわっ…今年のServerless アップデート、少なすぎ…?
maroon1st
1
160
Spring gRPC について / About Spring gRPC
mackey0225
0
200
watsonx.ai Dojo #6 継続的なAIアプリ開発と展開
oniak3ibm
PRO
0
280
GitHub Actions × RAGでコードレビューの検証の結果
sho_000
0
200
『改訂新版 良いコード/悪いコードで学ぶ設計入門』活用方法−爆速でスキルアップする!効果的な学習アプローチ / effective-learning-of-good-code
minodriven
29
5k
Open source software: how to live long and go far
gaelvaroquaux
0
520
VitePressを2週間使ってみた感想
hal_spidernight
0
110
chibiccをCILに移植した結果 (NGK2025S版)
kekyo
PRO
0
210
Compose でデザインと実装の差異を減らすための取り組み
oidy
1
290
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.6k
For a Future-Friendly Web
brad_frost
176
9.5k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
Bash Introduction
62gerente
610
210k
A Philosophy of Restraint
colly
203
16k
How GitHub (no longer) Works
holman
313
140k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Optimising Largest Contentful Paint
csswizardry
33
3.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
530
GitHub's CSS Performance
jonrohan
1030
460k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Transcript
Chris Keathley / @ChrisKeathley / c@keathley.io Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley / c@keathley.io