Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
44
2.8k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
5
1.1k
Contracts for building reliable systems
keathley
6
940
Kafka, the hard parts
keathley
3
1.7k
Building Resilient Elixir Systems
keathley
7
2.3k
Consistent, Distributed Elixir
keathley
6
1.6k
Telling stories with data visualization
keathley
1
650
Easing into continuous deployment
keathley
2
400
Leveling up your git skills
keathley
0
790
Generative Testing in Elixir
keathley
0
540
Other Decks in Programming
See All in Programming
CSC509 Lecture 03
javiergs
PRO
0
340
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
9
1.7k
After go func(): Goroutines Through a Beginner’s Eye
97vaibhav
0
410
Things You Thought You Didn’t Need To Care About That Have a Big Impact On Your Job
hollycummins
0
230
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
1k
SwiftDataを使って10万件のデータを読み書きする
akidon0000
0
150
その面倒な作業、「Dart」にやらせませんか? Flutter開発者のための業務効率化
yordgenome03
1
130
スマホから Youtube Shortsを見られないようにする
lemolatoon
27
33k
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
200
テーブル定義書の構造化抽出して、生成AIでDWH分析を試してみた / devio2025tokyo
kasacchiful
0
140
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
410
大規模アプリのDIフレームワーク刷新戦略 ~過去最大規模の並行開発を止めずにアプリ全体に導入するまで~
mot_techtalk
1
460
Featured
See All Featured
Visualization
eitanlees
149
16k
A designer walks into a library…
pauljervisheath
209
24k
How STYLIGHT went responsive
nonsquared
100
5.8k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
The Invisible Side of Design
smashingmag
302
51k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Being A Developer After 40
akosma
91
590k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Statistics for Hackers
jakevdp
799
220k
Transcript
Chris Keathley / @ChrisKeathley /
[email protected]
Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley /
[email protected]