$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
44
2.9k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
5
1.1k
Contracts for building reliable systems
keathley
6
980
Kafka, the hard parts
keathley
3
1.8k
Building Resilient Elixir Systems
keathley
7
2.4k
Consistent, Distributed Elixir
keathley
6
1.6k
Telling stories with data visualization
keathley
1
670
Easing into continuous deployment
keathley
2
410
Leveling up your git skills
keathley
0
810
Generative Testing in Elixir
keathley
0
560
Other Decks in Programming
See All in Programming
認証・認可の基本を学ぼう後編
kouyuume
0
190
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
310
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
710
connect-python: convenient protobuf RPC for Python
anuraaga
0
410
関数実行の裏側では何が起きているのか?
minop1205
1
690
Cell-Based Architecture
larchanjo
0
120
AIコーディングエージェント(NotebookLM)
kondai24
0
190
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
2
1k
Building AI Agents with TypeScript #TSKaigiHokuriku
izumin5210
6
1.3k
認証・認可の基本を学ぼう前編
kouyuume
0
200
ID管理機能開発の裏側 高速にSaaS連携を実現したチームのAI活用編
atzzcokek
0
230
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
120
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Practical Orchestrator
shlominoach
190
11k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Done Done
chrislema
186
16k
A Tale of Four Properties
chriscoyier
162
23k
Agile that works and the tools we love
rasmusluckow
331
21k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Code Reviewing Like a Champion
maltzj
527
40k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Transcript
Chris Keathley / @ChrisKeathley /
[email protected]
Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley /
[email protected]