Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
La reconnaissance d’images par réseau de neurones
Search
walid chergui
February 17, 2017
Programming
0
39
La reconnaissance d’images par réseau de neurones
walid chergui
February 17, 2017
Tweet
Share
More Decks by walid chergui
See All by walid chergui
Ansible, Infrastructure as code - VoxxedDays Luxembourg 2016
oraclewalid
0
160
Other Decks in Programming
See All in Programming
愛される翻訳の秘訣
kishikawakatsumi
3
370
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
12
2.8k
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
520
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
310
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
300
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
3.2k
Developing static sites with Ruby
okuramasafumi
1
340
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
180
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
0
180
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
7
4.2k
Featured
See All Featured
The agentic SEO stack - context over prompts
schlessera
0
580
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Evolving SEO for Evolving Search Engines
ryanjones
0
93
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
220
Google's AI Overviews - The New Search
badams
0
880
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
The Limits of Empathy - UXLibs8
cassininazir
1
200
Testing 201, or: Great Expectations
jmmastey
46
7.8k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Statistics for Hackers
jakevdp
799
230k
Speed Design
sergeychernyshev
33
1.5k
Transcript
La reconnaissance d’images par réseau de neurones Walid Chergui #SnowCamp
2017
Sommaire Encodage Convolution Réseau de neurone simple Réseau de neurone
de convolution LeNet Frameworks & code ImagNet
Moi Développeur Scala et Java FP Machine learning Les architectures
distribuées DevOps
Les images - Matrice
Les images RGB
Convolution Source : Wikipedia
Convolution
Réseaux de neurones Convolutional Neural Networks (CNN) Recurrent Neural Networks
(RNN) Autoencoders
CNN - types
Réseau de neurones
CNN-LeNet
Convolution (1*32*32) -> (16*32*32)
Relu (rectified linear unit )
Pooling (16*32*32) -> (16*16*16)
Fully Connected
Frameworks Caffe Torch Theano / Lasagne TensorFlow / Keras Deeplearning4j
CIFAR-10
Deeplearning4J CODE CODE CODE !!!
Depper ….
AlexNet (2012)
VGG Net (2014)
GoogLeNet (2015)
Pre-trained neural network TrainedModelHelper helper = new TrainedModelHelper(TrainedModels.VGG16); ComputationGraph vgg16
= helper.loadModel(); DataNormalization scaler = new VGG16ImagePreProcessor(); scaler.transform(image); INDArray[] output = vgg16.output(false,image); System.out.println(TrainedModels.VGG16.decodePredictions(output[0]));
Merci ! @walidchergui