Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
英語 × の私が、生成AIの力を借りて、OSSに初コントリビュートした話
Search
asap
March 26, 2025
Programming
0
390
英語 × の私が、生成AIの力を借りて、OSSに初コントリビュートした話
エンジニア達の「完全に理解した」Talk #63
の登壇資料になります。
asap
March 26, 2025
Tweet
Share
More Decks by asap
See All by asap
DeepSeek-R1の論文から読み解く背景技術
personabb
3
970
Other Decks in Programming
See All in Programming
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
2k
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
650
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.5k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
680
はじめてのカスタムエージェント【GitHub Copilot Agent Mode編】
satoshi256kbyte
0
160
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
39k
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
340
perlをWebAssembly上で動かすと何が嬉しいの??? / Where does Perl-on-Wasm actually make sense?
mackee
0
310
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
210
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
240
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.6k
CSC307 Lecture 02
javiergs
PRO
1
760
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
58k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Statistics for Hackers
jakevdp
799
230k
Visualization
eitanlees
150
16k
Optimizing for Happiness
mojombo
379
70k
Thoughts on Productivity
jonyablonski
74
5k
A Tale of Four Properties
chriscoyier
162
24k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
160
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
37
Amusing Abliteration
ianozsvald
0
85
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
120
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
94
Transcript
asap 英語 の私が、生成AIの力を借りて、 OSSに初コントリビュートした話
1 はじめに 自己紹介 asap AI・機械学習の理論に興味を持つエンジニア。 ZennでAI関連の技術記事を書いてます。 「asap zenn」で検索! @asap2650 ぜひ今アカウント作って登録してください
@asap2650
はじめに
3 はじめに はじめに OSSコントリビュート意外と簡単だったよ ついこの間初めてOSSにコントリビュートした超初心者の身ではありますが OSSへのコントリビュートは「ある程度」プログラミングができる人なら簡単だよ! 普段のコーディングとそんなに違いはなかったよ! ということをお話しできればと思います。 @asap2650
経緯
5 なんのリポジトリ? 経緯 @asap2650 https://github.com/langchain-ai/langchain-google Google CloudのVertexAIやGeminiなどをLangChainで 利用するための「langchain-google」というリポジトリ • VertexAI
Google Cloudが提供する機械学習全般を支援する プラットフォーム • Gemini ChatGPTのGoogle版 • LangChain 大規模言語モデル(LLM)を活用した アプリケーション開発を容易にするフレームワーク
6 OSSコントリビュートするに至った理由 経緯 @asap2650 RAGシステム開発の業務に必要だから! • ユーザが質問を入力 • LLMがRAGシステムをよびだす。 •
質問文から検索用のベクトルを作る • Dense Embedding Vector :文脈考慮での検索用 • Sparse Embedding Vector :単語での検索用 • Vector Store(DB)に保存された ドキュメント(+ベクトル)と類似度検索 • 検索結果をLLMに返して、それを元に回答させる 【RAGシステムとは】
7 OSSコントリビュートするに至った理由 経緯 @asap2650 RAGシステム開発の業務に必要だから! Google CloudのDBをベクトルストアとしたRAGのシステムを構築したい ↓ Embeddingsモデルによるベクトル化はできるけど、ハイブリット検索が動かない!? ↓
バグじゃん!!どうしよ・・・ ↓ マイナーな機能だから、自分が修正するしかない・・・
8 どんなバグ? 経緯 @asap2650 チュートリアル通りに実施しても Sparse Embedding Vectorがベクトルストアに格納されない https://python.langchain.com/docs/integrations/vectorstores/google_vertex_ai_vector_search/#hybrid-search
バグの原因
10 どんなバグ? バグの原因 @asap2650 データ保存部分にSparse Embedding Vectorに関しての 記述がないバグ
Issueを立てる
12 Issueを立てる Issueを立てる @asap2650 英語ゴミ人間なので OpenAI o1先生に助けてもらいました https://github.com/langchain-ai/langchain-google/issues/720 下記をプロンプトに入れて依頼 •
Issue立てるのが初めてであること • 英語が雑魚なこと • バグを発見した経緯 • バグを含むコード • 修正案
13 Issueを立てる Issueを立てる @asap2650 ちゃんと記載すればメンテナーの方は見てくれる ちゃんと記載しないと、後回しにされるissueも数多くあります。 コメントもらったらコードの修正・PRを実施
コード修正・PR
15 コード修正 コード修正・PR @asap2650 READMEをよく読むこと Langchain-googleの場合は やり方を全部説明してくれていた。 参考になると思うので紹介します。
16 コード修正 コード修正・PR @asap2650 “fork and pull request” workflowを利用する 元のリポジトリを自分のアカウントにForkする
↓ Forkしたリポジトリをローカルにクローン ↓ コードの修正、テスト、フォーマット、リンティングを実施し、リポジトリにpush ↓ 元リポジトリに対してpull requestを行う 詳細:https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project
17 Pull Requestを実施 コード修正・PR @asap2650 gpt-4oの力を借りながら、テンプレートに合わせて記載 PRのテンプレートが用意されている場合もあるので、そちらに合わせる(PULL_REQUEST_TEMPLATE.md) テンプレートがなければ、他の方のPRを参考にすれば良い アイコン載ると嬉しい!
18 まとめ やることは普通のコーディングと同じ 1 S A I R U 英語
× の私が、生成AIの力を借りて、OSSに初コントリビュートした話 英語ができなくても、生成AIでIssueをPRは作れる 2 コントリビュートを歓迎してくれるリポジトリ最高 3