Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プロテニスにおいて疲れが勝敗に与える影響を定量化してみる
Search
MIZUTANI RYOTA
November 02, 2019
2
1.2k
プロテニスにおいて疲れが勝敗に与える影響を定量化してみる
Sports Analyst Meetup #5(
https://spoana.connpass.com/event/148275/)で発表したLT資料です
。
MIZUTANI RYOTA
November 02, 2019
Tweet
Share
More Decks by MIZUTANI RYOTA
See All by MIZUTANI RYOTA
言語モデルにおける推論パラメータと小説生成への適用について
rmizuta3
0
530
PythonユーザによるRust入門
rmizuta3
16
7.5k
Featured
See All Featured
Music & Morning Musume
bryan
46
6.4k
A better future with KSS
kneath
238
17k
Rails Girls Zürich Keynote
gr2m
94
13k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Building Adaptive Systems
keathley
40
2.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
430
The World Runs on Bad Software
bkeepers
PRO
67
11k
Fireside Chat
paigeccino
34
3.2k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Transcript
ϓϩςχεʹ͓͍ͯ ർΕ͕উഊʹ༩͑ΔӨڹΛ ఆྔԽͯ͠ΈΔ 4QPSUT"OBMZTU.FFUVQ ਫ୩྄ଠ !SNJ[VUB
ࣗݾհ • ࢯ໊ɿਫ୩྄ଠ(@rmizuta3) • ͓ࣄɿϚʔέςΟϯάܥاۀͰσʔλ׆༻Λߟ͑Δਓ • झຯɿσʔλੳɺςχε • εϙʔπྺɿ •
ςχεྺ15 • େֶ࣌ମҭձॴଐ • ;͡ΈࢢࢢຽେձγϯάϧεBڃ̏Ґ
ʮۋ৫ർΕ͍ͯͨʯ • ݄̒ͷશถΦʔϓϯ४ʑܾউͰ6-1, 6-1, 6-3Ͱۋ৫Λഁͬ ͨ࣌ͷφμϧͷίϝϯτ • ४ʑܾউ·Ͱͷ4ࢼ߹ͷ߹ܭࢼ߹࣌ؒφμϧͷ9࣌ؒ ʹର͠ɺۋ৫13࣌ؒΛ͍͑ͯͨɻ ग़యɿIUUQTOFXTUFOOJTOFUOFXTUPEBZIUNM
ςχεͷࢼ߹ͷಛ • ࢼ߹͕࣌ؒৼΕ෯͕େ͖͍ • 4େେձͰ̑ηοτϚον̏ηοτઌऔ • 1࣌ؒڧͰऴΘΔ͜ͱ͋Ε5࣌ؒҎ্͔͔Δ߹͋Δ ͷ̐େେձͷࢼ߹࣌ؒ
ςχεͷࢼ߹ͷಛ • େձͷࢼ߹ִ͕ؒ͘ɺଟ͍ɻ • େձ։࠵ظؒ̎िؒɻͦͷதͰ࠷େ̓ࢼ߹Λઓ͍ ൈ͘ඞཁ͕͋Δ ճઓ
ճઓ ճઓ ճઓ ճઓ ճઓ ճઓ ճઓ શͷఔ ճઓ ४ʑܾউ ४ʑܾউ ४ܾউ % ४ܾউ 4 ܾউ % ܾউ 4
ർΕͷӨڹ͋Γͦ͏ɻ ͕࣮ͩࡍͲͷ͘Β͍ͷӨڹ͕ ͋ΔͷͩΖ͏͔ʁ
ੳํ • ϩδεςΟοΫճؼΛ༻͍ͯർΕ͕উʹ༩͑ΔӨڹΛݕূ • ճؼࣜ y = 1 1 +
exp( − (a1 − a2 )x1 + (b1 − b2 )x2 ) ɹɿউഊ PS ɹɿબखͷڧ͞ɿબखͷڧ͞ ɹɿબखͷർ࿑ɹɹɿબख̎ͷർ࿑ a1 a2 b2 b1 y
બखͷڧ͞ • ΠϩϨʔςΟϯάͷσʔλΛ༻ • https://ultimatetennisstatistics.com/ ͷΠϩϨʔςΟϯά
બखͷർ࿑ • ֤ࢼ߹ͷࢼ߹࣌ؒͷσʔλΛར༻ • https://github.com/JeffSackmann/tennis_atp • େձظؒதɺࢼ߹ͷർΕੵ͢Δ͕ɺճ෮ͷྔߟྀ ͍ͨ͠
બखͷർ࿑ͷߟ͑ํ ࢼ߹࣌ؒ ർ࿑ ճઓ ճઓ
ճઓ ർ࿑લࢼ߹ͷࢼ߹࣌ؒ ɹɹɹɹલࢼ߹ͷർ࿑ ർ࿑ଘ ଘ͕ͷ߹
ർ࿑ଘͷࢉग़ • ർ࿑ଘΛมԽͤ͞ͳ͕ΒϩδεςΟοΫճؼΛ࣮ࢪ • ༧ଌͱ࣮ࡍͷͷRMSE͕࠷খʹͳΔͷΛબ ർ࿑ଘ͕̔ͷ࣌ ࠷ͯ·Γ͕ྑ͍
ϩδεςΟοΫճؼͷ࣮ߦ • 2018ͷ4େେձͷ482ࢼ߹ͷσʔλΛ༻ y = 1 1 + exp( −
(a1 − a2 )x1 + (b1 − b2 )x2 ) ɹɿউഊ PS ɹɿબखͷڧ͞ɿબखͷڧ͞ ɹɿબखͷർ࿑ɹɹɿબख̎ͷർ࿑ a1 a2 b2 b1 y
݁Ռ ർ࿑ʹ͕ࠩ͋Δͱɺ ͕ࠩͳ͍߹ͱൺֱͯ͠উ͕ഒʹ ճؼ Φοζൺ
݁Ռͷαϯϓϧ ϕʔεͷۋ৫WTφμϧͷউͱർ࿑ͷࠩͷؔ
·ͱΊ • ςχεʹ͓͍ͯർΕ͕উʹ༩͑ΔӨڹΛϩδεςΟΫճ ؼΛ༻͍ͯఆྔԽͨ͠ • ർ࿑ͷ͕ࠩ100͋Δ߹ɺ͕ࠩͳ͍߹ͱൺֱͯ͠উ ͕60%ʹݮগ͢Δ͜ͱ͕Θ͔ͬͨ • ଥੑͷ֬ೝͷͨΊผͷΞϓϩʔνͰͬͯΈ͍ͨ