Upgrade to Pro — share decks privately, control downloads, hide ads and more …

BayesComp talk

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Ruth Angus Ruth Angus
April 04, 2018

BayesComp talk

Describing my research exoplanet populations across time and space to a statistics audience. Warning: this talk contained a lot of videos so this is an incomplete representation!

Avatar for Ruth Angus

Ruth Angus

April 04, 2018
Tweet

More Decks by Ruth Angus

Other Decks in Science

Transcript

  1. NSPOTS SPOT Ω i SIZE1…N TEMPERATURE F LIMB DARKENING λ1…N,

    t… PROT ϕ1…N, t… models Spot @ruthangus
  2. Célérité: (N) Foreman-Mackey et al. +RA (2017) ArXiv: 1703.09710 george:

    (N log(N)2) george.readthedocs.io celerite.readthedocs.io emcee Foreman-Mackey et al. (2013) ArXiv: 1202.3665 @ruthangus
  3. 4 x more accurate than sine-periodograms 18 x more accurate

    than autocorrelation functions The Gaussian process rotation period method: Angus et al. (2018) ArXiv: 1706.05459 @ruthangus
  4. m = 1, …, M ΓA, obs ΓA, true Noise

    tn,m fn,m det eff n = 1, …, N
  5. m = 1, …, M ΓA, obs ΓA, true Noise

    tn,m fn,m Prot gyro det eff n = 1, …, N
  6. ’Chronometer’ example: core H fraction & rotation Angus et al.

    (in prep) 5x precision improvement @ruthangus @ruthangus
  7. m = 1, …, M ΓA, obs ΓA, true Noise

    tn,m fn,m Prot gyro det eff n = 1, …, N
  8. m = 1, …, M ΓA, obs ΓA, true n

    = 1, …, N Noise tn,m fn,m Prot gyro det eff H M C G
  9. Kepler PLATO Gaia LSST TESS WFIRST Time #Stars ~mid 2020s

    2009 Billions 100-thousands April 2018 @ruthangus
  10. • I am using improved stellar ages to characterize the

    exoplanet population across time and space. Summary • I use GP regression & auxiliary information to infer stellar ages. @ruthangus
  11. 6.4 6.5 6.6 6.7 ln(l) 0.75 0.60 0.45 0.30 0.15

    ln( ) 19.14 19.08 19.02 18.96 18.90 ln( ) 14.8 14.6 14.4 14.2 ln(A) 3.015 3.030 3.045 3.060 ln(P) 6.4 6.5 6.6 6.7 ln(l) 0.75 0.60 0.45 0.30 0.15 ln( ) 19.14 19.08 19.02 18.96 18.90 ln( ) 3.015 3.030 3.045 3.060 ln(P) Plot made using corner.py (Foreman-Mackey, 2016) Affine invariant MCMC sampler: emcee (Foreman-Mackey, 2013; Goodman & Weare, 2013)