Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOpsはDevOpsと何が違うの?
Search
shibuiwilliam
July 21, 2022
Technology
1
370
MLOpsはDevOpsと何が違うの?
Developers Summit 2022 Summer(デブサミ2022夏)の登壇資料です。
shibuiwilliam
July 21, 2022
Tweet
Share
More Decks by shibuiwilliam
See All by shibuiwilliam
生成AI時代のデータ基盤
shibuiwilliam
6
4.1k
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
3
1.4k
AI人生苦節10年で会得したAIがやること_人間がやること.pdf
shibuiwilliam
1
350
LayerXのApplied R&D
shibuiwilliam
2
49
LLM時代の検索
shibuiwilliam
3
1k
生成AIを作るエンジニアリングと使うエンジニアリング
shibuiwilliam
2
110
AI Agentのキャッシュ、再利用、Ops
shibuiwilliam
2
130
生成AIのためのデータ収集とデータエンジニアリング
shibuiwilliam
5
680
LLMで推論するライブラリを整理する
shibuiwilliam
6
1.7k
Other Decks in Technology
See All in Technology
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
1.1k
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/06 - 2025/08
oracle4engineer
PRO
0
110
20250905_MeetUp_Ito-san_s_presentation.pdf
magicpod
1
100
未経験者・初心者に贈る!40分でわかるAndroidアプリ開発の今と大事なポイント
operando
6
750
DroidKaigi 2025 Androidエンジニアとしてのキャリア
mhidaka
2
390
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
260
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
200
使いやすいプラットフォームの作り方 ー LINEヤフーのKubernetes基盤に学ぶ理論と実践
lycorptech_jp
PRO
1
160
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
160
要件定義・デザインフェーズでもAIを活用して、コミュニケーションの密度を高める
kazukihayase
0
120
2025/09/16 仕様駆動開発とAI-DLCが導くAI駆動開発の新フェーズ
masahiro_okamura
0
140
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
GitHub's CSS Performance
jonrohan
1032
460k
Navigating Team Friction
lara
189
15k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Building Adaptive Systems
keathley
43
2.7k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Six Lessons from altMBA
skipperchong
28
4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Transcript
MLOpsはDevOpsと何が違うの? 澁井 雄介 shibui yusuke
自己紹介 shibui yusuke ▶ Launchable Inc. ソフトウェアエンジニア ▶ MLOpsコミュニティ運営 ▶
もともとクラウド基盤の開発、運用。 ▶ ここ6年くらいMLOpsで仕事。 ▶ Github: @shibuiwilliam ▶ 最近やってること: 本を書いてます cat : 0.55 dog: 0.45 human : 0.70 gorilla : 0.30 物体検知
本日の流れ ▶ DevOps and MLOps ▶ DevOps for ML
DevOps and MLOps
DevOps
MLOpsとは ▶ DevOps for ML or ML operations ▶ 機械学習という確率的、データ依存、発展途上、便利な技術を
DevOpsに組み込む ▶ いわゆる機械学習基盤や機械学習パイプラインだけでなく、要件定義、インフ ラ、データ管理、サービング、コスト、品質、組織論まで含む 広範な概念に成長中
DevOps for ML??? M L ML ML M L ML
M L ML M L 雑にMLを入れればMLOpsになるわけではない。 ML
DevOps for ML
機械学習を使ったプロダクト例 画像処理 写真を撮る タイトル入力 説明入力 登録する 自然言語処理 違反検知 登録情報から違反を フィルタリング
入力情報から 入力補助 超解像による 画質改善 ねこ 検索 ランク学習による 並べ替え あるコンテンツ登録アプリ 画像分類と 検索
違反検知を例に考える 写真を撮る タイトル入力 説明入力 登録する 違反検知 登録情報から違反を フィルタリング ねこ あるコンテンツ登録アプリ
違反とは 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 公序良俗に反する画像 著作権違反の画像 グロテスクな画像
サービスに則さない画像 ・・・を違反として排除したい
開発の前にデータ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ DATA 機械学習には大量のデータが必要 •
集める • 意味付ける • 管理する 正常 違反 集める 意味付ける 管理する
実験して性能を評価する 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ DATA 実験を繰り返して性能を評価する。 必要に応じてDataやPlanに戻る。
ここでGPUや分散処理→コスト増大。 正常 違反 性能が低い データが足りない 遅い 実験 戻る
実験的なコード:頻繁に書き直す、 途中から実行、使い捨て 本番コード: 動かし続ける、再現性、 デバッグ 実験的なコードを清書する 写真を撮る タイトル入力 説明入力 登録する
ねこ あるコンテンツ登録アプリ 正常 違反 実験 DATA 動かし方がわからない・・・
しかしそれは始まりでしかなかった・・・ リリース・・・ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 正常 違反
実験 DATA
偽陽性と偽陰性 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 実験 DATA 偽陽性:違反なのに正常と判定
偽陰性:正常なのに違反と判定 データの品質や網羅性が足りないと、 偽陽性や偽陰性が高くなる 正常なのに 違反と判定された 投稿者は不快 閲覧者は不快 違反なのに 正常扱い
ヒューマンインザループ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 実験 DATA 自動化が進んだ仕組みにおいて、
一部の判断に人間を介在させること。 機械学習の誤りを正すためには人間の ダブルチェックが必要。 正常 違反 違反と間違えや すい正常 正常と間違えや すい違反 人間
正常 違反 推測するな計測せよ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 実験
DATA 機械学習の判定と実用上の価値を評価する。 評価に応じて次のActionを決める。 人間 評価 正答率: xx Precision: yy Recall: zz 違反画像閲覧数: aa クレーム数: bb コスト: cc Go: 改善Plan No Go: 停止措置
DevOps for ML 実験 DATA 人間 評価
▶ AIエンジニアのための 機械学習システムデザインパターン ▶ 2021年5月17日出版 ▶ https://www.amazon.co.jp/dp/4798169447/ ▶ 続編執筆中! ▶
2022年11月発売予定!? ▶ 機械学習で需要予測、違反検知、検索を実 現するシステムの作り方を解説 出版しました! ?
参考資料 ▶ MLOps: Continuous delivery and automation pipelines in machine
learning https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning ▶ Introduction to MLOps https://speakerdeck.com/asei/introduction-to-mlops ▶ Machine Learning Operations (MLOps): Overview, Definition, and Architecture https://arxiv.org/abs/2205.02302 ▶ People + AI Research https://pair.withgoogle.com/ ▶ Awesome MLOps https://github.com/visenger/awesome-mlops ▶ AIシステムが成熟する今「 MLOps」が必要とされる理由とは? MLOpsを推進するために大切なこと https://codezine.jp/article/detail/15953
Thank you!