$30 off During Our Annual Pro Sale. View Details »

Upper bound of photovoltaic efficiency of imperfect crystals

Sungyun Kim
February 20, 2020

Upper bound of photovoltaic efficiency of imperfect crystals

Upper bound of photovoltaic efficiency of imperfect crystals: Kesterite solar cells.

Sungyun Kim

February 20, 2020
Tweet

More Decks by Sungyun Kim

Other Decks in Science

Transcript

  1. Upper bound of photovoltaic efficiency of
    imperfect crystals.
    &
    Sunghyun Kim
    Dept. of Materials, Imperial College London
    [email protected] | frssp.github.io | frssp | 0000-0001-5072-6801 2020 CPE Seminar
    What a computational [ Physicists ] can do about it.

    View Slide

  2. Acknowledgement
    2
    Prof. Aron Walsh
    Dr. Ji-Sang Park
    Dr. Samantha N. Hood
    Dr. Thomas Unold
    Dr. José A. Marquez
    ICL HZB

    View Slide

  3. Solar Cell: Efficiency Matters
    3
    If you were here?
    ?

    View Slide

  4. When is it time to stop?
    4

    View Slide

  5. Seriously, when?
    5
    Upper bound of photovoltaic efficiency
    defined by laws of physics and chemistry

    View Slide

  6. Theory of Solar Cells 1/3: SQ limit
    6
    Science 352, aad4424 (2016)
    J. Appl. Phys. 32, 510 (1961)
    Nonradiative
    recombination

    View Slide

  7. Theory of Solar Cells 2/3: SRH statistics
    7
    Phys. Rev. 87, 835 (1952)
    Phys. Rev. 87, 387 (1952)

    View Slide

  8. Theory of Solar Cells 3/3: Carrier Capture
    8

    View Slide

  9. We have/know (almost) everything.
    But, can we predict something?
    9
    Theory Experiment
    SQ limit
    SRH statistics
    MPE process
    Efficiency
    lifetime
    Capture cross-section
    Empirical parameters?
    η = max η(Eg
    , NT
    , ET
    , Cn/p
    ,…) ?

    View Slide

  10. If we can remove extrinsic impurities,
    the native defects remain.
    10
    Trap Limited Conversion Efficiency
    η = max η(Eg
    , NT
    , ET
    , Cn/p
    ,…) !
    Maximum photovoltaic efficiency of a material
    containing equilibrium concentrations of native defects
    Equilibrium concentration of defects is a balance
    between enthalpic cost and entropic gain.
    Defect concentration
    Energy
    Enthalpy: ΔH
    Entropy: −TΔS
    Free energy: ΔG = ΔH −TΔS
    Gain from
    more configurations
    Cost of
    Breaking bonds
    NT
    at equilibrium!

    View Slide

  11. What can a computational physicist do?
    11
    “It’s time to see what I can do,
    to test the limits and break through”
    - Queen Elsa of Arendelle

    View Slide

  12. The equation of (almost) everything
    12
    “Oh, I performed DFT
    calculations”

    View Slide

  13. Maximum Photovoltaic Efficiency of Real Materials
    from First-Principles
    &
    S
    &
    Q
    (
    JDS
    &%
    (
    JDS
    Q

    (
    )
    (
    )
    (
    7
    Q

    ǻQ
    1
    &
    (
    T9
    (
    )
    Q
    -
    9
    %
    9$
    -
    6&
    -

    T5
    65+
    : Ș
    PD[
    )HUK
    Z[Y\J[\YL
    (
    JDS
    1
    &
    1
    9
    7OHZL
    KPHNYHT
    ȝ
    L
    -VYTH[PVU
    LULYN`
    (
    I
    (
    7
    *VUÄN\YH[PVU
    JVVYKPUH[L
    *HW[\YL
    JVLɉJPLU[
    &
    QS
    :LSMJVUZPZ[LU[
    -LYTP SL]LS
    (
    )
    1
    7
    Q

    S

    :9/
    YLJVTIPUH[PVU YH[L
    +L]PJL ZPT\SH[PVU
    ;YHWSPTP[LK
    TH_PT\T LɉJPLUJ`
    5
    65+
    Ș
    9HKPH[P]L SPTP[
    -
    6&
    -

    %
    - -
    6&
    -

    íHH9N 7íH5
    65+
    :














    13
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
    If only we have known the limit before we spend too much time and money…
    C
    p
    C
    n
    E
    gap
    VB CB
    E
    gap
    Energy
    Configuration coordinate
    p
    0
    n
    0
    ΔE
    f
    E
    F
    E
    F
    E
    T
    N
    V
    p
    0
    +Δn
    n
    0
    +Δn
    DOS
    N
    C
    μ
    A
    μ
    B
    B AB
    A
    E
    F,p
    qV
    E
    F,n
    J
    V
    C
    n
    : Electron
    capture
    C
    p
    : Hole
    capture
    V
    B
    +
    V
    A

    V
    B
    VA
    E
    F
    h+
    e−
    J
    SC
    J
    0
    rad(eqV/k
    B
    T−1) qR
    SRH
    W η
    max
    Band
    structure
    E
    gap
    N
    C
    N
    V
    ro t
    condition
    μ
    ormation
    energy
    E
    f
    , E
    T
    Configuration
    coordinate
    Capture
    coe cient
    C
    n/p
    Se consistent
    ermi e e
    E
    F
    N
    T
    n
    0
    p
    0
    SRH
    recom ination rate
    R
    SRH
    Radiati e imit
    J
    SC
    J
    0
    rad
    SC 0 SRH
    1
    1
    2
    2
    3
    3
    4
    5 6
    6 7
    7
    8
    5
    5
    4

    View Slide

  14. Kesterites: We put much effort into but…
    14

    View Slide

  15. Ga


    Brief (alternative) history of kesterites
    Si
    Cd Te
    Cu In Se
    Cu Zn Sn
    S/
    Se
    2−
    2+
    3+
    4+
    2+
    1+

    View Slide

  16. Which defects are bad?

    View Slide

  17. Two Common Characteristics of “Killer” Centers
    Deep level Large lattice relaxation
    “… So-called killer centers, with fast
    nonradiative transitions, … we list four
    examples:

    2. Defect with favorable vibrational
    properties, that is, with large-
    amplitude modes promoting the
    transitions, and large-energy modes
    to take up the electronic energy
    …”
    - A. M. Stoneham in Defects and Defect
    Processes in nonmetallic Solids
    17
    Park, J.-S., Kim, S., Xie, Z. & Walsh, A.,
    Nat. Rev. Mater. 3, 194 (2018)
    Which defects exhibit both deep levels and large laBce relaxaCon?
    Lone-pairs!

    View Slide

  18. Redox Activity of Cation Lone-pairs
    Large lattice relaxation
    Inert-pair effect: ineffective screening by
    d and f orbitals
    The large ionization energy for ns orbitals
    leads to a deep donor levels.
    Deep level
    [Kr] 4d10 5s0 5p0
    R = 71 pm
    [Kr] 4d10 5s2 5p0
    R = 112 pm
    The reduction and oxidation may lead to a
    large change in the structure of defect
    Sn(IV)
    Sn(II)
    The defects involving the oxidation and reduction of lone-pairs
    can act as killer centers.

    View Slide

  19. Lone-pairs in VS
    , VS
    -CuZn
    and SnZn
    9
    6
    9
    6

    &X
    =Q
    í
    6Q
    =Q

    9
    6
    &X
    =Q

    9
    6
    6Q
    =Q

    D E F
    Defect wave functions are well localized around Sn 5s orbitals.
    19
    J. Mater. Chem. A 7, 2686 (2019)

    View Slide

  20. Deep Donor Levels of VS,
    SnZn
    , and Complexes
    20
    Energy (eV)
    a b c d
    0.0
    0.5
    1.0
    1.5
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    n
    n
    V
    e n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (+/ )
    V
    n
    n
    V
    n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    e
    n
    V
    e n
    e
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (2+/+)
    (+/0)
    (+/0)
    (+/0)
    (2+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    n
    n
    V
    e
    g
    n
    n
    n
    g
    n
    n
    g
    g
    n
    V
    g
    E
    F
    /
    E
    F
    e e e
    The formaCon of lone-pair in Sn-related defects
    introduces deep levels.
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889

    View Slide

  21. Large lattice distortion
    2 4 6
    −2 0 2 4 6
    −2 0
    Sn
    Zn
    2++h++e−
    Sn
    Zn
    1++h+
    Sn
    Zn
    2+
    Ge
    Zn
    2++h++e−
    Ge
    Zn
    1++h+
    Ge
    Zn
    2+
    0
    2
    1
    Q (am 1 2 Q (am 1 2
    ne (e
    a b
    E
    b
    E
    b
    (QHUJ\ H9
    1HXWUDO
    WUDS
    5HSXOVLYH
    WUDS
    *LDQW
    WUDS
    9
    6
    &X
    =Q
    9
    6

    6Q
    =Q

    6Q
    =Q

    &X 6Q
    í
    7 .
    ıQ FP

    í
    í
    í
    í
    í
    í
    í
    D E
    The lone-pair leads to large lattice distortions
    and large capture cross-sections.
    J. Mater. Chem. A 7, 2686 (2019)
    S. Kim, J. A. Márquez, T. Unold and A. Walsh,
    arXiv:1912.07889

    View Slide

  22. Can we remove SnZn
    2+?
    SnZn
    2+
    - Sn poor
    - Zn rich
    - hole poor (n-type)
    22

    View Slide

  23. Phase diagram
    23
    ZnSe is too stable with respect to the formation of CZTSe.
    μSn
    (eV)
    −1
    −2
    0
    o Zn-rich
    Additional Zn forms ZnSe.
    o Sn-poor
    The Cu-rich secondary phases are
    conductive.
    o hole poor (n-type)
    The acceptor (CuZn
    ) are too many.
    Ag
    8
    SnSe
    6
    Ag
    Ag
    2
    SnSe
    3
    ZnSe
    SnSe
    SnSe
    2
    Se
    CuSe
    Cu
    2
    Se
    Cu
    Cu
    2
    SnSe
    3
    Se
    ZnSe
    SnSe
    SnSe

    μSn
    μZn
    μ Cu
    0
    −2
    −2 −


    −2
    0
    0
    μSn
    μZn
    μ Ag
    0
    −2
    −2 −


    −2
    0
    0
    Se
    Se
    a b
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
    (eV)
    (eV)

    View Slide

  24. Best Scenario: Anion-rich
    24
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889

    View Slide

  25. Trap Limited Conversion Efficiency
    2 4 6
    −2 0 2 4 6
    −2 0
    Sn
    Zn
    2++h++e−
    Sn
    Zn
    1++h+
    Sn
    Zn
    2+
    Ge
    Zn
    2++h++e−
    Ge
    Zn
    1++h+
    Ge
    Zn
    2+
    0
    2
    1
    Q (am 1 2 Q (am 1 2
    ne (e
    a b
    E
    b
    E
    b
    25
    Energy (eV)
    a b c d
    0.0
    0.5
    1.0
    1.5
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    n
    n
    V
    e n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (+/ )
    V
    n
    n
    V
    n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    e
    n
    V
    e n
    e
    n n
    n
    n
    V
    E
    F
    (0/
    (+/0
    (2+/+)
    (+/0)
    (+/0)
    (2+/0)
    (0/ )
    (0/ )
    (0/+)
    V
    e
    n
    n
    V
    n
    n
    n
    g
    g
    n
    V
    g
    0 0.4 0.8
    0
    50
    40
    30
    20
    10
    SQ limit
    N
    d
    = 1020 cm–3
    w/o doping
    a
    Current den it (m /cm2)
    Voltage (V)
    NT
    Cn
    ET
    SnZn
    : high concentration, deep level, and
    high capture coefficient
    Nonradiative
    Loss
    T = 300K
    W = 2µm
    31.6%
    20.3%
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889

    View Slide

  26. Bad News: All Kesterites are not good.
    E
    g
    (eV) E
    g
    (eV)
    0
    20
    40
    60
    J
    SC
    (mA/cm2)
    a b
    c d
    0.5
    1.0
    1.5
    2.0
    V
    OC
    (V)
    0.5 1.0 1.5 2.0
    0
    25
    50
    75
    100
    FF (%)
    0.5 1.0 1.5 2.0
    0
    10
    20
    30
    PCE (%)
    CZGSe
    AZTSe
    CZTSSe
    SQ
    lim
    i
    SQ
    limi
    SQ limi
    SQ
    lim
    i
    E g
    High concentration of
    recombination centers limits the
    open-circuit voltage and
    efficiency of kesterite solar cells
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889

    View Slide

  27. You Get What You Paid For
    Cu Zn Sn S


    Killer centers
    Many killer centers
    Ga
    3+
    4+
    2+

    View Slide

  28. To p or Not To p, That is the Question!
    28
    p-type:
    High hole concentration promotes the formation of native donors.
    not p-type:
    Low hole concentration reduces the p-type conductivity.
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889

    View Slide

  29. n-type Doping in p-type GaN
    29
    Rev. Mod. Phys. 87, 1139 (2015)

    View Slide

  30. Codoping in Kesterites
    30
    Low hole concentration:
    Low donor concentration
    Post annealing in
    a H-free environment:
    High hole concentration
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889

    View Slide

  31. Effect of H-doping
    E
    g
    (eV) E
    g
    (eV)
    0
    20
    40
    60
    J
    SC
    (mA/cm2)
    a b
    c d
    0.5
    1.0
    1.5
    2.0
    V
    OC
    (V)
    0.5 1.0 1.5 2.0
    0
    25
    50
    75
    100
    FF (%)
    0.5 1.0 1.5 2.0
    0
    10
    20
    30
    PCE (%)
    CZGSe
    AZTSe
    CZTSSe
    SQ
    lim
    i
    SQ
    limi
    SQ limi
    SQ
    lim
    i
    E g
    J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018)
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
    To access the true limits of solar cells,
    we need to take into account of
    thermodynamics of light, electron,
    and crystal.

    View Slide

  32. Summary:
    From Theory to “Measurables”
    32
    &
    S
    &
    Q
    (
    JDS
    9% &%
    (
    JDS
    (QHUJ\
    &RQ¿JXUDWLRQ FRRUGLQDWH
    S

    Q

    (
    I
    (
    )
    (
    )
    (
    7
    1
    9
    S

    ǻQ
    Q

    ǻQ
    '26
    1
    &
    ȝ
    $
    ȝ
    %
    % $%
    $
    (
    )
    S
    T9
    (
    )
    Q
    -
    9
    &
    Q
    (OHFWURQ
    FDSWXUH
    &
    S
    +ROH
    FDSWXUH
    9
    %

    9
    $
    í
    9
    %
    9$
    (
    )
    K

    -
    6&
    -

    T5
    65+
    : Ș
    PD[
    )HUK
    Z[Y\J[\YL
    (
    JDS
    1
    &
    1
    9
    7OHZL
    KPHNYHT
    ȝ
    L
    -VYTH[PVU
    LULYN`
    (
    I
    (
    7
    *VUÄN\YH[PVU
    JVVYKPUH[L
    *HW[\YL
    JVLɉJPLU[
    &
    QS
    :LSMJVUZPZ[LU[
    -LYTP SL]LS
    (
    )
    1
    7
    Q

    S











    I’m developing the first-
    principles method to calculate
    the theoretical maximum
    photovoltaic efficiency of
    real materials without
    empirical parameters.
    The simulations can
    complement the experiments
    and bridge the gap between
    macroscopic properties of
    materials and microscopic
    processes underneath.
    J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018)
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889

    View Slide

  33. Making Good Solar Cells: a No-win Scenario.
    Do not go gentle into that good night
    Dylan Thomas
    Do not go gentle into that good night,
    Old age should burn and rave at close of day;
    Rage, rage against the dying of the light.
    Though wise men at their end know dark is right,
    Because their words had forked no lightning, they
    Do not go gentle into that good night.

    33

    View Slide

  34. “I don’t believe in the no-win scenario.”
    Do not go gentle into that good night
    Do not go gentle into that good night,
    Old age should burn and rave at close of day;
    Rage, rage against the nonradiative recombination.
    Though wise men at their end know dark is right,
    Because their words had forked no lightning, they
    Do not go gentle into that good night.

    34
    - James T. Kirk

    View Slide