Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Upper bound of photovoltaic efficiency of imper...

Sungyun Kim
February 20, 2020

Upper bound of photovoltaic efficiency of imperfect crystals

Upper bound of photovoltaic efficiency of imperfect crystals: Kesterite solar cells.

Sungyun Kim

February 20, 2020
Tweet

More Decks by Sungyun Kim

Other Decks in Science

Transcript

  1. Upper bound of photovoltaic efficiency of imperfect crystals. & Sunghyun

    Kim Dept. of Materials, Imperial College London [email protected] | frssp.github.io | frssp | 0000-0001-5072-6801 2020 CPE Seminar What a computational [ Physicists ] can do about it.
  2. Acknowledgement 2 Prof. Aron Walsh Dr. Ji-Sang Park Dr. Samantha

    N. Hood Dr. Thomas Unold Dr. José A. Marquez ICL HZB
  3. Theory of Solar Cells 1/3: SQ limit 6 Science 352,

    aad4424 (2016) J. Appl. Phys. 32, 510 (1961) Nonradiative recombination
  4. Theory of Solar Cells 2/3: SRH statistics 7 Phys. Rev.

    87, 835 (1952) Phys. Rev. 87, 387 (1952)
  5. We have/know (almost) everything. But, can we predict something? 9

    Theory Experiment SQ limit SRH statistics MPE process Efficiency lifetime Capture cross-section Empirical parameters? η = max η(Eg , NT , ET , Cn/p ,…) ?
  6. If we can remove extrinsic impurities, the native defects remain.

    10 Trap Limited Conversion Efficiency η = max η(Eg , NT , ET , Cn/p ,…) ! Maximum photovoltaic efficiency of a material containing equilibrium concentrations of native defects Equilibrium concentration of defects is a balance between enthalpic cost and entropic gain. Defect concentration Energy Enthalpy: ΔH Entropy: −TΔS Free energy: ΔG = ΔH −TΔS Gain from more configurations Cost of Breaking bonds NT at equilibrium!
  7. What can a computational physicist do? 11 “It’s time to

    see what I can do, to test the limits and break through” - Queen Elsa of Arendelle
  8. Maximum Photovoltaic Efficiency of Real Materials from First-Principles & S

    & Q ( JDS &% ( JDS Q  ( ) ( ) ( 7 Q  ǻQ 1 & ( T9 ( ) Q - 9 % 9$ - 6& -  T5 65+ : Ș PD[ )HUK Z[Y\J[\YL ( JDS  1 &  1 9 7OHZL KPHNYHT ȝ L -VYTH[PVU LULYN` ( I  ( 7 *VUÄN\YH[PVU JVVYKPUH[L *HW[\YL JVLɉJPLU[ & QS :LSMJVUZPZ[LU[ -LYTP SL]LS ( )  1 7  Q   S  :9/ YLJVTIPUH[PVU YH[L +L]PJL ZPT\SH[PVU ;YHWSPTP[LK TH_PT\T LɉJPLUJ` 5 65+ Ș 9HKPH[P]L SPTP[ - 6&  -  % - - 6& -  íHH9N 7 íH5 65+ :                 13 S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889 If only we have known the limit before we spend too much time and money… C p C n E gap VB CB E gap Energy Configuration coordinate p 0 n 0 ΔE f E F E F E T N V p 0 +Δn n 0 +Δn DOS N C μ A μ B B AB A E F,p qV E F,n J V C n : Electron capture C p : Hole capture V B + V A − V B VA E F h+ e− J SC J 0 rad(eqV/k B T−1) qR SRH W η max Band structure E gap N C N V ro t condition μ ormation energy E f , E T Configuration coordinate Capture coe cient C n/p Se consistent ermi e e E F N T n 0 p 0 SRH recom ination rate R SRH Radiati e imit J SC J 0 rad SC 0 SRH 1 1 2 2 3 3 4 5 6 6 7 7 8 5 5 4
  9. Ga ☠ ☠ Brief (alternative) history of kesterites Si Cd

    Te Cu In Se Cu Zn Sn S/ Se 2− 2+ 3+ 4+ 2+ 1+
  10. Two Common Characteristics of “Killer” Centers Deep level Large lattice

    relaxation “… So-called killer centers, with fast nonradiative transitions, … we list four examples: … 2. Defect with favorable vibrational properties, that is, with large- amplitude modes promoting the transitions, and large-energy modes to take up the electronic energy …” - A. M. Stoneham in Defects and Defect Processes in nonmetallic Solids 17 Park, J.-S., Kim, S., Xie, Z. & Walsh, A., Nat. Rev. Mater. 3, 194 (2018) Which defects exhibit both deep levels and large laBce relaxaCon? Lone-pairs!
  11. Redox Activity of Cation Lone-pairs Large lattice relaxation Inert-pair effect:

    ineffective screening by d and f orbitals The large ionization energy for ns orbitals leads to a deep donor levels. Deep level [Kr] 4d10 5s0 5p0 R = 71 pm [Kr] 4d10 5s2 5p0 R = 112 pm The reduction and oxidation may lead to a large change in the structure of defect Sn(IV) Sn(II) The defects involving the oxidation and reduction of lone-pairs can act as killer centers.
  12. Lone-pairs in VS , VS -CuZn and SnZn 9 6

     9 6  &X =Q í 6Q =Q  9 6 &X =Q  9 6  6Q =Q  D E F Defect wave functions are well localized around Sn 5s orbitals. 19 J. Mater. Chem. A 7, 2686 (2019)
  13. Deep Donor Levels of VS, SnZn , and Complexes 20

    Energy (eV) a b c d 0.0 0.5 1.0 1.5 (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e n n V e n n n n n n V E F (0/ ) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (+/ ) V n n V n n n n n n V E F (0/ ) (+/0) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e e n V e n e n n n n V E F (0/ ) (+/0) (2+/+) (+/0) (+/0) (+/0) (2+/0) (0/ ) (0/ ) (0/+) (0/ ) V e n n V e g n n n g n n g g n V g E F / E F e e e The formaCon of lone-pair in Sn-related defects introduces deep levels. S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
  14. Large lattice distortion 2 4 6 −2 0 2 4

    6 −2 0 Sn Zn 2++h++e− Sn Zn 1++h+ Sn Zn 2+ Ge Zn 2++h++e− Ge Zn 1++h+ Ge Zn 2+ 0 2 1 Q (am 1 2 Q (am 1 2 ne (e a b E b E b (QHUJ\ H9 1HXWUDO WUDS 5HSXOVLYH WUDS *LDQW WUDS 9 6 &X =Q  9 6  6Q =Q  6Q =Q  &X 6Q í 7 . ıQ FP       í í í í í í í D E The lone-pair leads to large lattice distortions and large capture cross-sections. J. Mater. Chem. A 7, 2686 (2019) S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
  15. Can we remove SnZn 2+? SnZn 2+ - Sn poor

    - Zn rich - hole poor (n-type) 22
  16. Phase diagram 23 ZnSe is too stable with respect to

    the formation of CZTSe. μSn (eV) −1 −2 0 o Zn-rich Additional Zn forms ZnSe. o Sn-poor The Cu-rich secondary phases are conductive. o hole poor (n-type) The acceptor (CuZn ) are too many. Ag 8 SnSe 6 Ag Ag 2 SnSe 3 ZnSe SnSe SnSe 2 Se CuSe Cu 2 Se Cu Cu 2 SnSe 3 Se ZnSe SnSe SnSe ₂ μSn μZn μ Cu 0 −2 −2 − − − −2 0 0 μSn μZn μ Ag 0 −2 −2 − − − −2 0 0 Se Se a b S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889 (eV) (eV)
  17. Best Scenario: Anion-rich 24 S. Kim, J. A. Márquez, T.

    Unold and A. Walsh, arXiv:1912.07889
  18. Trap Limited Conversion Efficiency 2 4 6 −2 0 2

    4 6 −2 0 Sn Zn 2++h++e− Sn Zn 1++h+ Sn Zn 2+ Ge Zn 2++h++e− Ge Zn 1++h+ Ge Zn 2+ 0 2 1 Q (am 1 2 Q (am 1 2 ne (e a b E b E b 25 Energy (eV) a b c d 0.0 0.5 1.0 1.5 (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e n n V e n n n n n n V E F (0/ ) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (+/ ) V n n V n n n n n n V E F (0/ ) (+/0) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e e n V e n e n n n n V E F (0/ (+/0 (2+/+) (+/0) (+/0) (2+/0) (0/ ) (0/ ) (0/+) V e n n V n n n g g n V g 0 0.4 0.8 0 50 40 30 20 10 SQ limit N d = 1020 cm–3 w/o doping a Current den it (m /cm2) Voltage (V) NT Cn ET SnZn : high concentration, deep level, and high capture coefficient Nonradiative Loss T = 300K W = 2µm 31.6% 20.3% S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
  19. Bad News: All Kesterites are not good. E g (eV)

    E g (eV) 0 20 40 60 J SC (mA/cm2) a b c d 0.5 1.0 1.5 2.0 V OC (V) 0.5 1.0 1.5 2.0 0 25 50 75 100 FF (%) 0.5 1.0 1.5 2.0 0 10 20 30 PCE (%) CZGSe AZTSe CZTSSe SQ lim i SQ limi SQ limi SQ lim i E g High concentration of recombination centers limits the open-circuit voltage and efficiency of kesterite solar cells S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
  20. You Get What You Paid For Cu Zn Sn S

    ☠ ☠ Killer centers Many killer centers Ga 3+ 4+ 2+
  21. To p or Not To p, That is the Question!

    28 p-type: High hole concentration promotes the formation of native donors. not p-type: Low hole concentration reduces the p-type conductivity. S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
  22. Codoping in Kesterites 30 Low hole concentration: Low donor concentration

    Post annealing in a H-free environment: High hole concentration S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
  23. Effect of H-doping E g (eV) E g (eV) 0

    20 40 60 J SC (mA/cm2) a b c d 0.5 1.0 1.5 2.0 V OC (V) 0.5 1.0 1.5 2.0 0 25 50 75 100 FF (%) 0.5 1.0 1.5 2.0 0 10 20 30 PCE (%) CZGSe AZTSe CZTSSe SQ lim i SQ limi SQ limi SQ lim i E g J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018) S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889 To access the true limits of solar cells, we need to take into account of thermodynamics of light, electron, and crystal.
  24. Summary: From Theory to “Measurables” 32 & S & Q

    ( JDS 9% &% ( JDS (QHUJ\ &RQ¿JXUDWLRQ FRRUGLQDWH S  Q  ( I ( ) ( ) ( 7 1 9 S  ǻQ Q  ǻQ '26 1 & ȝ $ ȝ % % $% $ ( ) S T9 ( ) Q - 9 & Q  (OHFWURQ FDSWXUH & S  +ROH FDSWXUH 9 %  9 $ í 9 % 9$ ( ) K Hí - 6& -  T5 65+ : Ș PD[ )HUK Z[Y\J[\YL ( JDS  1 &  1 9 7OHZL KPHNYHT ȝ L -VYTH[PVU LULYN` ( I  ( 7 *VUÄN\YH[PVU JVVYKPUH[L *HW[\YL JVLɉJPLU[ & QS :LSMJVUZPZ[LU[ -LYTP SL]LS ( )  1 7  Q   S                I’m developing the first- principles method to calculate the theoretical maximum photovoltaic efficiency of real materials without empirical parameters. The simulations can complement the experiments and bridge the gap between macroscopic properties of materials and microscopic processes underneath. J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018) S. Kim, J. A. Márquez, T. Unold and A. Walsh, arXiv:1912.07889
  25. Making Good Solar Cells: a No-win Scenario. Do not go

    gentle into that good night Dylan Thomas Do not go gentle into that good night, Old age should burn and rave at close of day; Rage, rage against the dying of the light. Though wise men at their end know dark is right, Because their words had forked no lightning, they Do not go gentle into that good night. … 33
  26. “I don’t believe in the no-win scenario.” Do not go

    gentle into that good night Do not go gentle into that good night, Old age should burn and rave at close of day; Rage, rage against the nonradiative recombination. Though wise men at their end know dark is right, Because their words had forked no lightning, they Do not go gentle into that good night. … 34 - James T. Kirk