Upper limit to the photovoltaic efficiency of imperfect crystals

Upper limit to the photovoltaic efficiency of imperfect crystals

The upper limit to the photovoltaic efficiency of imperfect crystals.

C01ca09ec2784228a3dfab0d02168b92?s=128

Sungyun Kim

May 26, 2020
Tweet

Transcript

  1. Upper limit to the photovoltaic efficiency of imperfect crystals &

    Sunghyun Kim 김성현 (金聖鉉) Imperial College London sunghyun.kim@imperial.ac.uk | frssp.github.io | frssp | 0000-0001-5072-6801 2020 Farewell Seminar
  2. London, 2017 2

  3. 3 years of hard work at Imperial College London 3

  4. Acknowledgement 4 Prof. Aron Walsh Dr. Ji-Sang Park Dr. Samantha

    N. Hood Dr. Thomas Unold Dr. José A. Marquez ICL HZB
  5. Solar Cell 101 ☀ ♨ P.T. Landsberg and G. Tonge,

    J. Appl. Phys. (1980) Light in, electricity out (XX. YY. 200Z) Thermodynamics 101
  6. Thermodynamics of Heat Engine !"#$%& = 1 − '!"#$% '&'(

    = 95%! The efficiencies of commercial solar cells are much below 30%. High temperature of sun enables extremely efficient engines when irreversible loss has not existed. The losses from irreversible heat transfer are significant in solar cells. (XX. YY. 200Z) Thermodynamics 101
  7. Solar Cell: Efficiency Matters 7 If you were here? ?

  8. When is it time to stop? 8

  9. Seriously, when? 9 Upper bound of photovoltaic efficiency defined by

    laws of physics and chemistry
  10. Theory of Solar Cells 1/3: SQ limit 10 Science 352,

    aad4424 (2016) J. Appl. Phys. 32, 510 (1961) Nonradiative recombination
  11. Theory of Solar Cells 2/3: SRH statistics 11 Phys. Rev.

    87, 835 (1952) Phys. Rev. 87, 387 (1952)
  12. Theory of Solar Cells 3/3: Carrier Capture 12

  13. We have/know (almost) everything. But, can we predict something? 13

    Theory Experiment SQ limit SRH statistics MPE process Efficiency lifetime Capture cross-section Empirical parameters? η = max η(Eg , NT , ET , Cn/p ,…) ?
  14. I have a dream. 14 Structure in, Efficiency out

  15. What can a computational [physicist] do? 15 “It’s time to

    see what I can do, to test the limits and break through” - Queen Elsa of Arendelle
  16. Getting parameters for a certain material: The equation of (almost)

    everything 16 “Oh, I performed DFT calculations”
  17. Maximum Photovoltaic Efficiency of Real Materials from First-Principles 17 S.

    Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020) C p C n E gap VB CB E gap Energy Configuration coordinate p 0 n 0 ΔE f E F E F E T N V p 0 +Δn n 0 +Δn DOS N C μ A μ B B AB A E F,p qV E F,n J V C n : Electron capture C p : Hole capture V B + V A − V B VA E F h+ e− J SC J 0 rad(eqV/k B T−1) qR SRH W η max Band structure E gap N C N V ro t condition μ ormation energy E f , E T Configuration coordinate Capture coe cient C n/p Se consistent ermi e e E F N T n 0 p 0 recom ination rate R SRH J SC J 0 rad 1 1 2 3 3 4 5 6 6 7 8 5 5 4 Take no empirical parameters!
  18. You know where to find them. 18 CPLAP: https://github.com/jbuckeridge/cplap; https://github.com/frssp/cplapy

    CarrierCapture.jl: https://github.com/WMD-group/CarrierCapture.jl SC-Fermi: https://github.com/jbuckeridge/sc-fermi (a)TLC; Wannier_alpha: https://github.com/WMD-group/TrapLimitedConversion DefectwithTheBoys: https://github.com/kavanase/DefectsWithTheBoys CPLAP CarrierCapture.jl Wannier_alpha SC-Fermi (a)TLC DWTF
  19. Why am I doing this? 19 If only we have

    known the limit before we spend too much time and money…
  20. Kesterites: We put much effort into but… 20 By other's

    faults wise men correct their own.
  21. Ga ☠ ☠ Brief (alternative) history of kesterites Si Cd

    Te Cu In Se Cu Zn Sn S/ Se 2− 2+ 3+ 4+ 2+ 1+
  22. Can it absorb light?

  23. Of course, it can, but how well? 23 0 1

    2 3 4 5 Energy (eV) 101 102 103 104 105 106 107 Absorption coe cient (cm−1) 0 0.1 0.2 0.3 0.4 0.5 0.6 Solar spectrum Solar spectrum Absorption coe cient an ap Spectral irra iation ( m−2eV−1) For 2 µm-thick CZTS, α = 104 cm−1 corresponds to a = 98%. Very well
  24. Which defects are bad?

  25. Two Common Characteristics of “Killer” Centers Deep level Large lattice

    relaxation “… So-called killer centers, with fast nonradiative transitions, … we list four examples: … 2. Defect with favorable vibrational properties, that is, with large- amplitude modes promoting the transitions, and large-energy modes to take up the electronic energy …” - A. M. Stoneham in Defects and Defect Processes in nonmetallic Solids 25 Park, J.-S., Kim, S., Xie, Z. & Walsh, A., Nat. Rev. Mater. 3, 194 (2018) Which defects exhibit both deep levels and large la5ce relaxa6on? Lone-pairs!
  26. Redox Activity of Cation Lone-pairs Large lattice relaxation Inert-pair effect:

    ineffective screening by d and f orbitals The large ionization energy for ns orbitals leads to a deep donor levels. Deep level [Kr] 4d10 5s0 5p0 R = 71 pm [Kr] 4d10 5s2 5p0 R = 112 pm The reduction and oxidation may lead to a large change in the structure of defect Sn(IV) Sn(II) The defects involving the oxida6on and reduc6on of lone-pairs can act as killer centers.
  27. Lone-pairs in VS , VS -CuZn and SnZn 9 6

     9 6  &X =Q í 6Q =Q  9 6 &X =Q  9 6  6Q =Q  D E F Defect wave functions are well localized around Sn 5s orbitals. 27 J. Mater. Chem. A 7, 2686 (2019)
  28. Deep Donor Levels of VS, SnZn , and Complexes 28

    Energy (eV) a b c d 0.0 0.5 1.0 1.5 (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e n n V e n n n n n n V E F (0/ ) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (+/ ) V n n V n n n n n n V E F (0/ ) (+/0) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e e n V e n e n n n n V E F (0/ ) (+/0) (2+/+) (+/0) (+/0) (+/0) (2+/0) (0/ ) (0/ ) (0/+) (0/ ) V e n n V e g n n n g n n g g n V g E F / E F e e e The forma8on of lone-pair in Sn-related defects introduces deep levels. S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
  29. Large lattice distortion 2 4 6 −2 0 2 4

    6 −2 0 Sn Zn 2++h++e− Sn Zn 1++h+ Sn Zn 2+ Ge Zn 2++h++e− Ge Zn 1++h+ Ge Zn 2+ 0 2 1 Q (am 1 2 Q (am 1 2 ne (e a b E b E b (QHUJ\ H9 1HXWUDO WUDS 5HSXOVLYH WUDS *LDQW WUDS 9 6 &X =Q  9 6  6Q =Q  6Q =Q  &X 6Q í 7 . ıQ FP       í í í í í í í D E The lone-pair leads to large lattice distortions and large capture cross-sections. J. Mater. Chem. A 7, 2686 (2019) S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
  30. Can we remove SnZn 2+? SnZn 2+ - Sn poor

    - Zn rich - hole poor (n-type) 30
  31. Phase diagram 31 ZnSe is too stable with respect to

    the formation of CZTSe. μSn (eV) −1 −2 0 o Zn-rich Additional Zn forms ZnSe. o Sn-poor The Cu-rich secondary phases are conductive. o hole poor (n-type) The acceptor (CuZn ) are too many. Ag 8 SnSe 6 Ag Ag 2 SnSe 3 ZnSe SnSe SnSe 2 Se CuSe Cu 2 Se Cu Cu 2 SnSe 3 Se ZnSe SnSe SnSe ₂ μSn μZn μ Cu 0 −2 −2 − − − −2 0 0 μSn μZn μ Ag 0 −2 −2 − − − −2 0 0 Se Se a b S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020) (eV) (eV)
  32. Best Scenario: Anion-rich 32 S. Kim, J. A. Márquez, T.

    Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
  33. Trap Limited Conversion Efficiency 2 4 6 −2 0 2

    4 6 −2 0 Sn Zn 2++h++e− Sn Zn 1++h+ Sn Zn 2+ Ge Zn 2++h++e− Ge Zn 1++h+ Ge Zn 2+ 0 2 1 Q (am 1 2 Q (am 1 2 ne (e a b E b E b 33 Energy (eV) a b c d 0.0 0.5 1.0 1.5 (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e n n V e n n n n n n V E F (0/ ) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (+/ ) V n n V n n n n n n V E F (0/ ) (+/0) (+/0) (+/0) (2+/+) (+/0) (0/ ) (0/ ) (0/+) (0/ ) V e e n V e n e n n n n V E F (0/ (+/0 (2+/+) (+/0) (+/0) (2+/0) (0/ ) (0/ ) (0/+) V e n n V n n n g g n V g 0 0.4 0.8 0 50 40 30 20 10 SQ limit N d = 1020 cm–3 w/o doping a Current den it (m /cm2) Voltage (V) NT Cn ET SnZn : high concentration, deep level, and high capture coefficient Nonradiative Loss T = 300K W = 2µm 31.6% 20.3% Energy Environ. Sci. 13, 1481 (2020)
  34. Bad News: All Kesterites are not good. E g (eV)

    E g (eV) 0 20 40 60 J SC (mA/cm2) a b c d 0.5 1.0 1.5 2.0 V OC (V) 0.5 1.0 1.5 2.0 0 25 50 75 100 FF (%) 0.5 1.0 1.5 2.0 0 10 20 30 PCE (%) CZGSe AZTSe CZTSSe SQ lim i SQ limi SQ limi SQ lim i E g High concentration of recombination centers limits the open-circuit voltage and efficiency of kesterite solar cells S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
  35. You Get What You Paid For Cu Zn Sn S/

    Se ☠ ☠ Killer centers Many killer centers Ga 3+ 4+ 2+
  36. To p or Not To p, That is the Question!

    36 p-type: High hole concentration promotes the formation of native donors. not p-type: Low hole concentration reduces the p-type conductivity. S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
  37. n-type Doping in p-type GaN 37 Rev. Mod. Phys. 87,

    1139 (2015)
  38. Codoping in Kesterites 38 Low hole concentration: Low donor concentration

    Post annealing in a H-free environment: High hole concentration S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
  39. Effect of H-doping E g (eV) E g (eV) 0

    20 40 60 J SC (mA/cm2) a b c d 0.5 1.0 1.5 2.0 V OC (V) 0.5 1.0 1.5 2.0 0 25 50 75 100 FF (%) 0.5 1.0 1.5 2.0 0 10 20 30 PCE (%) CZGSe AZTSe CZTSSe SQ lim i SQ limi SQ limi SQ lim i E g J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018) S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020) To access the true limits of solar cells, we need to take into account of thermodynamics of light, electron, and crystal.
  40. Optimal thickness of CZTS 40 0 2 4 6 8

    10 Thickness (μ 0 10 1 20 2 0 icienc ( aTLC Max W (aTLC) Radiative li it li it
  41. Not-hands-on session (a)TLC: https://github.com/WMD-group/TrapLimitedConversion/blob/master/atlc/aTLC.ipynb 41

  42. Summary: From Theory to “Measurables” 42 & S & Q

    ( JDS 9% &% ( JDS (QHUJ\ &RQ¿JXUDWLRQ FRRUGLQDWH S  Q  ( I ( ) ( ) ( 7 1 9 S  ǻQ Q  ǻQ '26 1 & ȝ $ ȝ % % $% $ ( ) S T9 ( ) Q - 9 & Q  (OHFWURQ FDSWXUH & S  +ROH FDSWXUH 9 %  9 $ í 9 % 9$ ( ) K Hí - 6& -  T5 65+ : Ș PD[ )HUK Z[Y\J[\YL ( JDS  1 &  1 9 7OHZL KPHNYHT ȝ L -VYTH[PVU LULYN` ( I  ( 7 *VUÄN\YH[PVU JVVYKPUH[L *HW[\YL JVLɉJPLU[ & QS :LSMJVUZPZ[LU[ -LYTP SL]LS ( )  1 7  Q   S                I’m developing the first- principles method to calculate the theoretical maximum photovoltaic efficiency of real materials without empirical parameters. The simulations can complement the experiments and bridge the gap between macroscopic properties of materials and microscopic processes underneath. J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018) S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
  43. Making Good Solar Cells: a No-win Scenario. A lesson I’ve

    learned for 3 years. We can not change the laws of physics and chemistry. 43
  44. Making Good Solar Cells: a No-win Scenario. Do not go

    gentle into that good night Dylan Thomas Do not go gentle into that good night, Old age should burn and rave at close of day; Rage, rage against the dying of the light. Though wise men at their end know dark is right, Because their words had forked no lightning, they Do not go gentle into that good night. … 44
  45. “I don’t believe in the no-win scenario.” Do not go

    gentle into that good night Do not go gentle into that good night, Old age should burn and rave at close of day; Rage, rage against the nonradiative recombination. Though wise men at their end know dark is right, Because their words had forked no lightning, they Do not go gentle into that good night. … 45 - James T. Kirk
  46. Finally! 46