$30 off During Our Annual Pro Sale. View Details »

Upper limit to the photovoltaic efficiency of imperfect crystals

Upper limit to the photovoltaic efficiency of imperfect crystals

The upper limit to the photovoltaic efficiency of imperfect crystals.

Sungyun Kim

May 26, 2020
Tweet

More Decks by Sungyun Kim

Other Decks in Science

Transcript

  1. Upper limit to the photovoltaic efficiency of
    imperfect crystals
    &
    Sunghyun Kim
    김성현 (金聖鉉)
    Imperial College London
    [email protected] | frssp.github.io | frssp | 0000-0001-5072-6801 2020 Farewell Seminar

    View Slide

  2. London, 2017
    2

    View Slide

  3. 3 years of hard work
    at Imperial College London
    3

    View Slide

  4. Acknowledgement
    4
    Prof. Aron Walsh
    Dr. Ji-Sang Park
    Dr. Samantha N. Hood
    Dr. Thomas Unold
    Dr. José A. Marquez
    ICL HZB

    View Slide

  5. Solar Cell 101
    ☀ ♨

    P.T. Landsberg and G. Tonge, J. Appl. Phys. (1980)
    Light in, electricity out
    (XX. YY. 200Z) Thermodynamics 101

    View Slide

  6. Thermodynamics of Heat Engine
    !"#$%&
    = 1 − '!"#$%
    '&'(
    = 95%!
    The efficiencies of commercial solar cells
    are much below 30%.
    High temperature of sun enables
    extremely efficient engines
    when irreversible loss has not existed.
    The losses from irreversible heat transfer
    are significant in solar cells.
    (XX. YY. 200Z) Thermodynamics 101

    View Slide

  7. Solar Cell: Efficiency Matters
    7
    If you were here?
    ?

    View Slide

  8. When is it time to stop?
    8

    View Slide

  9. Seriously, when?
    9
    Upper bound of photovoltaic efficiency
    defined by laws of physics and chemistry

    View Slide

  10. Theory of Solar Cells 1/3: SQ limit
    10
    Science 352, aad4424 (2016)
    J. Appl. Phys. 32, 510 (1961)
    Nonradiative
    recombination

    View Slide

  11. Theory of Solar Cells 2/3: SRH statistics
    11
    Phys. Rev. 87, 835 (1952)
    Phys. Rev. 87, 387 (1952)

    View Slide

  12. Theory of Solar Cells 3/3: Carrier Capture
    12

    View Slide

  13. We have/know (almost) everything.
    But, can we predict something?
    13
    Theory Experiment
    SQ limit
    SRH statistics
    MPE process
    Efficiency
    lifetime
    Capture cross-section
    Empirical parameters?
    η = max η(Eg
    , NT
    , ET
    , Cn/p
    ,…) ?

    View Slide

  14. I have a dream.
    14
    Structure in, Efficiency out

    View Slide

  15. What can a computational [physicist] do?
    15
    “It’s time to see what I can do,
    to test the limits and break through”
    - Queen Elsa of Arendelle

    View Slide

  16. Getting parameters for a certain material:
    The equation of (almost) everything
    16
    “Oh, I performed DFT
    calculations”

    View Slide

  17. Maximum Photovoltaic Efficiency of Real Materials
    from First-Principles
    17
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
    C
    p
    C
    n
    E
    gap
    VB CB
    E
    gap
    Energy
    Configuration coordinate
    p
    0
    n
    0
    ΔE
    f
    E
    F
    E
    F
    E
    T
    N
    V
    p
    0
    +Δn
    n
    0
    +Δn
    DOS
    N
    C
    μ
    A
    μ
    B
    B AB
    A
    E
    F,p
    qV
    E
    F,n
    J
    V
    C
    n
    : Electron
    capture
    C
    p
    : Hole
    capture
    V
    B
    +
    V
    A

    V
    B
    VA
    E
    F
    h+
    e−
    J
    SC
    J
    0
    rad(eqV/k
    B
    T−1) qR
    SRH
    W η
    max
    Band
    structure
    E
    gap
    N
    C
    N
    V
    ro t
    condition
    μ
    ormation
    energy
    E
    f
    , E
    T
    Configuration
    coordinate
    Capture
    coe cient
    C
    n/p
    Se consistent
    ermi e e
    E
    F
    N
    T
    n
    0
    p
    0
    recom ination rate
    R
    SRH
    J
    SC
    J
    0
    rad
    1
    1 2
    3
    3
    4
    5 6
    6 7 8
    5
    5
    4
    Take no empirical parameters!

    View Slide

  18. You know where to find them.
    18
    CPLAP: https://github.com/jbuckeridge/cplap; https://github.com/frssp/cplapy
    CarrierCapture.jl: https://github.com/WMD-group/CarrierCapture.jl
    SC-Fermi: https://github.com/jbuckeridge/sc-fermi
    (a)TLC; Wannier_alpha: https://github.com/WMD-group/TrapLimitedConversion
    DefectwithTheBoys: https://github.com/kavanase/DefectsWithTheBoys
    CPLAP
    CarrierCapture.jl
    Wannier_alpha
    SC-Fermi
    (a)TLC
    DWTF

    View Slide

  19. Why am I doing this?
    19
    If only we have known the limit before we spend
    too much time and money…

    View Slide

  20. Kesterites: We put much effort into but…
    20
    By other's faults wise men correct their own.

    View Slide

  21. Ga


    Brief (alternative) history of kesterites
    Si
    Cd Te
    Cu In Se
    Cu Zn Sn
    S/
    Se
    2−
    2+
    3+
    4+
    2+
    1+

    View Slide

  22. Can it absorb light?

    View Slide

  23. Of course, it can, but how well?
    23
    0 1 2 3 4 5
    Energy (eV)
    101
    102
    103
    104
    105
    106
    107
    Absorption coe cient (cm−1)
    0
    0.1
    0.2
    0.3
    0.4
    0.5
    0.6
    Solar
    spectrum
    Solar
    spectrum
    Absorption
    coe cient
    an ap
    Spectral irra iation ( m−2eV−1)
    For 2 µm-thick CZTS,
    α = 104 cm−1 corresponds to a = 98%.
    Very well

    View Slide

  24. Which defects are bad?

    View Slide

  25. Two Common Characteristics of “Killer” Centers
    Deep level Large lattice relaxation
    “… So-called killer centers, with fast
    nonradiative transitions, … we list four
    examples:

    2. Defect with favorable vibrational
    properties, that is, with large-
    amplitude modes promoting the
    transitions, and large-energy modes
    to take up the electronic energy
    …”
    - A. M. Stoneham in Defects and Defect
    Processes in nonmetallic Solids
    25
    Park, J.-S., Kim, S., Xie, Z. & Walsh, A.,
    Nat. Rev. Mater. 3, 194 (2018)
    Which defects exhibit both deep levels and large la5ce relaxa6on?
    Lone-pairs!

    View Slide

  26. Redox Activity of Cation Lone-pairs
    Large lattice relaxation
    Inert-pair effect: ineffective screening by
    d and f orbitals
    The large ionization energy for ns orbitals
    leads to a deep donor levels.
    Deep level
    [Kr] 4d10 5s0 5p0
    R = 71 pm
    [Kr] 4d10 5s2 5p0
    R = 112 pm
    The reduction and oxidation may lead to a
    large change in the structure of defect
    Sn(IV)
    Sn(II)
    The defects involving the oxida6on and reduc6on of lone-pairs
    can act as killer centers.

    View Slide

  27. Lone-pairs in VS
    , VS
    -CuZn
    and SnZn
    9
    6
    9
    6

    &X
    =Q
    í
    6Q
    =Q

    9
    6
    &X
    =Q

    9
    6
    6Q
    =Q

    D E F
    Defect wave functions are well localized around Sn 5s orbitals.
    27
    J. Mater. Chem. A 7, 2686 (2019)

    View Slide

  28. Deep Donor Levels of VS,
    SnZn
    , and Complexes
    28
    Energy (eV)
    a b c d
    0.0
    0.5
    1.0
    1.5
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    n
    n
    V
    e n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (+/ )
    V
    n
    n
    V
    n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    e
    n
    V
    e n
    e
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (2+/+)
    (+/0)
    (+/0)
    (+/0)
    (2+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    n
    n
    V
    e
    g
    n
    n
    n
    g
    n
    n
    g
    g
    n
    V
    g
    E
    F
    /
    E
    F
    e e e
    The forma8on of lone-pair in Sn-related defects
    introduces deep levels.
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  29. Large lattice distortion
    2 4 6
    −2 0 2 4 6
    −2 0
    Sn
    Zn
    2++h++e−
    Sn
    Zn
    1++h+
    Sn
    Zn
    2+
    Ge
    Zn
    2++h++e−
    Ge
    Zn
    1++h+
    Ge
    Zn
    2+
    0
    2
    1
    Q (am 1 2 Q (am 1 2
    ne (e
    a b
    E
    b
    E
    b
    (QHUJ\ H9
    1HXWUDO
    WUDS
    5HSXOVLYH
    WUDS
    *LDQW
    WUDS
    9
    6
    &X
    =Q
    9
    6

    6Q
    =Q

    6Q
    =Q

    &X 6Q
    í
    7 .
    ıQ FP

    í
    í
    í
    í
    í
    í
    í
    D E
    The lone-pair leads to large lattice distortions
    and large capture cross-sections.
    J. Mater. Chem. A 7, 2686 (2019)
    S. Kim, J. A. Márquez, T. Unold and A. Walsh,
    Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  30. Can we remove SnZn
    2+?
    SnZn
    2+
    - Sn poor
    - Zn rich
    - hole poor (n-type)
    30

    View Slide

  31. Phase diagram
    31
    ZnSe is too stable with respect to the formation of CZTSe.
    μSn
    (eV)
    −1
    −2
    0
    o Zn-rich
    Additional Zn forms ZnSe.
    o Sn-poor
    The Cu-rich secondary phases are
    conductive.
    o hole poor (n-type)
    The acceptor (CuZn
    ) are too many.
    Ag
    8
    SnSe
    6
    Ag
    Ag
    2
    SnSe
    3
    ZnSe
    SnSe
    SnSe
    2
    Se
    CuSe
    Cu
    2
    Se
    Cu
    Cu
    2
    SnSe
    3
    Se
    ZnSe
    SnSe
    SnSe

    μSn
    μZn
    μ Cu
    0
    −2
    −2 −


    −2
    0
    0
    μSn
    μZn
    μ Ag
    0
    −2
    −2 −


    −2
    0
    0
    Se
    Se
    a b
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
    (eV)
    (eV)

    View Slide

  32. Best Scenario: Anion-rich
    32
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  33. Trap Limited Conversion Efficiency
    2 4 6
    −2 0 2 4 6
    −2 0
    Sn
    Zn
    2++h++e−
    Sn
    Zn
    1++h+
    Sn
    Zn
    2+
    Ge
    Zn
    2++h++e−
    Ge
    Zn
    1++h+
    Ge
    Zn
    2+
    0
    2
    1
    Q (am 1 2 Q (am 1 2
    ne (e
    a b
    E
    b
    E
    b
    33
    Energy (eV)
    a b c d
    0.0
    0.5
    1.0
    1.5
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    n
    n
    V
    e n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (+/ )
    V
    n
    n
    V
    n
    n
    n n
    n
    n
    V
    E
    F
    (0/ )
    (+/0)
    (+/0)
    (+/0)
    (2+/+)
    (+/0)
    (0/ )
    (0/ )
    (0/+)
    (0/ )
    V
    e
    e
    n
    V
    e n
    e
    n n
    n
    n
    V
    E
    F
    (0/
    (+/0
    (2+/+)
    (+/0)
    (+/0)
    (2+/0)
    (0/ )
    (0/ )
    (0/+)
    V
    e
    n
    n
    V
    n
    n
    n
    g
    g
    n
    V
    g
    0 0.4 0.8
    0
    50
    40
    30
    20
    10
    SQ limit
    N
    d
    = 1020 cm–3
    w/o doping
    a
    Current den it (m /cm2)
    Voltage (V)
    NT
    Cn
    ET
    SnZn
    : high concentration, deep level, and
    high capture coefficient
    Nonradiative
    Loss
    T = 300K
    W = 2µm
    31.6%
    20.3%
    Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  34. Bad News: All Kesterites are not good.
    E
    g
    (eV) E
    g
    (eV)
    0
    20
    40
    60
    J
    SC
    (mA/cm2)
    a b
    c d
    0.5
    1.0
    1.5
    2.0
    V
    OC
    (V)
    0.5 1.0 1.5 2.0
    0
    25
    50
    75
    100
    FF (%)
    0.5 1.0 1.5 2.0
    0
    10
    20
    30
    PCE (%)
    CZGSe
    AZTSe
    CZTSSe
    SQ
    lim
    i
    SQ
    limi
    SQ limi
    SQ
    lim
    i
    E g
    High concentration of
    recombination centers limits the
    open-circuit voltage and
    efficiency of kesterite solar cells
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  35. You Get What You Paid For
    Cu Zn Sn
    S/
    Se


    Killer centers
    Many killer centers
    Ga
    3+
    4+
    2+

    View Slide

  36. To p or Not To p, That is the Question!
    36
    p-type:
    High hole concentration promotes the formation of native donors.
    not p-type:
    Low hole concentration reduces the p-type conductivity.
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  37. n-type Doping in p-type GaN
    37
    Rev. Mod. Phys. 87, 1139 (2015)

    View Slide

  38. Codoping in Kesterites
    38
    Low hole concentration:
    Low donor concentration
    Post annealing in
    a H-free environment:
    High hole concentration
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  39. Effect of H-doping
    E
    g
    (eV) E
    g
    (eV)
    0
    20
    40
    60
    J
    SC
    (mA/cm2)
    a b
    c d
    0.5
    1.0
    1.5
    2.0
    V
    OC
    (V)
    0.5 1.0 1.5 2.0
    0
    25
    50
    75
    100
    FF (%)
    0.5 1.0 1.5 2.0
    0
    10
    20
    30
    PCE (%)
    CZGSe
    AZTSe
    CZTSSe
    SQ
    lim
    i
    SQ
    limi
    SQ limi
    SQ
    lim
    i
    E g
    J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018)
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)
    To access the true limits of solar cells,
    we need to take into account of
    thermodynamics of light, electron,
    and crystal.

    View Slide

  40. Optimal thickness of CZTS
    40
    0 2 4 6 8 10
    Thickness (μ
    0
    10
    1
    20
    2
    0
    icienc (
    aTLC
    Max
    W
    (aTLC)
    Radiative li it
    li it

    View Slide

  41. Not-hands-on session
    (a)TLC: https://github.com/WMD-group/TrapLimitedConversion/blob/master/atlc/aTLC.ipynb
    41

    View Slide

  42. Summary:
    From Theory to “Measurables”
    42
    &
    S
    &
    Q
    (
    JDS
    9% &%
    (
    JDS
    (QHUJ\
    &RQ¿JXUDWLRQ FRRUGLQDWH
    S

    Q

    (
    I
    (
    )
    (
    )
    (
    7
    1
    9
    S

    ǻQ
    Q

    ǻQ
    '26
    1
    &
    ȝ
    $
    ȝ
    %
    % $%
    $
    (
    )
    S
    T9
    (
    )
    Q
    -
    9
    &
    Q
    (OHFWURQ
    FDSWXUH
    &
    S
    +ROH
    FDSWXUH
    9
    %

    9
    $
    í
    9
    %
    9$
    (
    )
    K

    -
    6&
    -

    T5
    65+
    : Ș
    PD[
    )HUK
    Z[Y\J[\YL
    (
    JDS
    1
    &
    1
    9
    7OHZL
    KPHNYHT
    ȝ
    L
    -VYTH[PVU
    LULYN`
    (
    I
    (
    7
    *VUÄN\YH[PVU
    JVVYKPUH[L
    *HW[\YL
    JVLɉJPLU[
    &
    QS
    :LSMJVUZPZ[LU[
    -LYTP SL]LS
    (
    )
    1
    7
    Q

    S











    I’m developing the first-
    principles method to calculate
    the theoretical maximum
    photovoltaic efficiency of
    real materials without
    empirical parameters.
    The simulations can
    complement the experiments
    and bridge the gap between
    macroscopic properties of
    materials and microscopic
    processes underneath.
    J.-S. Park, S. Kim, Z. Xie, and A. Walsh, Nat. Rev. Mater. 3, 194 (2018)
    S. Kim, J. A. Márquez, T. Unold and A. Walsh, Energy Environ. Sci. 13, 1481 (2020)

    View Slide

  43. Making Good Solar Cells: a No-win Scenario.
    A lesson I’ve learned for 3 years.
    We can not change the laws of physics and chemistry.
    43

    View Slide

  44. Making Good Solar Cells: a No-win Scenario.
    Do not go gentle into that good night
    Dylan Thomas
    Do not go gentle into that good night,
    Old age should burn and rave at close of day;
    Rage, rage against the dying of the light.
    Though wise men at their end know dark is right,
    Because their words had forked no lightning, they
    Do not go gentle into that good night.

    44

    View Slide

  45. “I don’t believe in the no-win scenario.”
    Do not go gentle into that good night
    Do not go gentle into that good night,
    Old age should burn and rave at close of day;
    Rage, rage against the nonradiative recombination.
    Though wise men at their end know dark is right,
    Because their words had forked no lightning, they
    Do not go gentle into that good night.

    45
    - James T. Kirk

    View Slide

  46. Finally!
    46

    View Slide