Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
brmsの使い方
Search
tanaka_marimo
January 08, 2020
0
720
brmsの使い方
brmsの使い方の話です。
tanaka_marimo
January 08, 2020
Tweet
Share
More Decks by tanaka_marimo
See All by tanaka_marimo
ベイズABテスト
tanaka_marimo
0
460
状態空間モデルによる予測と補間
tanaka_marimo
0
350
時変係数モデル
tanaka_marimo
0
610
不連続回帰デザイン
tanaka_marimo
0
650
ぼくの町の不安定
tanaka_marimo
0
890
真夜中には何が起こっているのか
tanaka_marimo
0
1.1k
佐渡島を見積もる
tanaka_marimo
0
1.1k
Featured
See All Featured
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
180
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
120
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
94
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
870
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
100
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
Measuring & Analyzing Core Web Vitals
bluesmoon
9
720
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Transcript
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 第3部第5章 brmsの使い⽅ 2020年1⽉8⽇(⼩寒) ベイズ統計モデリングによる データ分析⼊⾨
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 誰?
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ tanaka_marimo 京都で天気の研究 某天気会社勤務 某受託分析会社勤務 雲コンペ History: Now:
Recently:
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ AGENDA n brmsの基本事項 n brmsを⽤いたモデルの推定⼿順 n brmsによる単回帰モデルの推定 →brmsの基本的な使い⽅→事前分布の変更
n brmsの仕組み n Stanコードの⾃動⽣成 →Stanに渡すデータの⾃動⽣成→rstanによる再現 n brmsの活⽤ n brmsによる事後分布の可視化→brmsによる予測 →predict関数を使わない予測の実装 →回帰直線の図⽰
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ AGENDA n brmsの基本事項 n brmsを⽤いたモデルの推定⼿順 n brmsによる単回帰モデルの推定 →brmsの基本的な使い⽅→事前分布の変更
n brmsの仕組み n Stanコードの⾃動⽣成 →Stanに渡すデータの⾃動⽣成→rstanによる再現 n brmsの活⽤ n brmsによる事後分布の可視化→brmsによる予測 →predict関数を使わない予測の実装 →回帰直線の図⽰
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ {brms}とは n Bayesian Regression Models using 'Stan' n
回帰モデルをStanで推定するパッケージ n Stanコードを書く必要がないので簡単に実装
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 並列化するコア数
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ AGENDA n brmsの基本事項 n brmsを⽤いたモデルの推定⼿順 n brmsによる単回帰モデルの推定 →brmsの基本的な使い⽅→事前分布の変更
n brmsの仕組み n Stanコードの⾃動⽣成 →Stanに渡すデータの⾃動⽣成→rstanによる再現 n brmsの活⽤ n brmsによる事後分布の可視化→brmsによる予測 →predict関数を使わない予測の実装 →回帰直線の図⽰
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 線形予測⼦ 正規分布 恒等関数
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 収束OK 事後平均
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ as.mcmc関数で取得
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 説明変数が複数 の場合は 「+」でつなげる 線形予測⼦だけ 外だしできる
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ デフォルトの リンク関数を使⽤する 場合は省略可能
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ brm関数でMCMC
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ brmの デフォルト設定
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ prior_summary で事前分布確認
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ t分布 無情報
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 71?
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 応答変数 の中央値
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ get_priorでMCMC の前に事前分布確認
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 空⽩で無情報 事前分布を指定
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 平均0 標準偏差100000 の正規分布
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ AGENDA n brmsの基本事項 n brmsを⽤いたモデルの推定⼿順 n brmsによる単回帰モデルの推定 →brmsの基本的な使い⽅→事前分布の変更
n brmsの仕組み n Stanコードの⾃動⽣成 →Stanに渡すデータの⾃動⽣成→rstanによる再現 n brmsの活⽤ n brmsによる事後分布の可視化→brmsによる予測 →predict関数を使わない予測の実装 →回帰直線の図⽰
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ MCMCの後に
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ MCMCの前に
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ dataブロック
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 常に「0」を渡す。「1」を渡すと データを活⽤して事後分布を推定しない
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ transformed dataブロック
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 中⼼化
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ parameters ブロック
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 中⼼化後の切⽚
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ generated quantities ブロック
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 正しい切⽚を算出
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ model ブロック
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 対数密度加算
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ MCMCの前に
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ デザイン⾏列 「0」
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ AGENDA n brmsの基本事項 n brmsを⽤いたモデルの推定⼿順 n brmsによる単回帰モデルの推定 →brmsの基本的な使い⽅→事前分布の変更
n brmsの仕組み n Stanコードの⾃動⽣成 →Stanに渡すデータの⾃動⽣成→rstanによる再現 n brmsの活⽤ n brmsによる事後分布の可視化→brmsによる予測 →predict関数を使わない予測の実装 →回帰直線の図⽰
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ bayesplotパッケージの 「mcmc_xx」関数における 「xx」に当たる名称を指定
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 予測区間の⽅が広い
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ 正規分布乱数の 再現性
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ サマリ n {brms}を⽤いることでstanコードを書かず に実装が可能 n デフォルトでベクトル化 n デフォルトで説明変数を中⼼化
n 事前分布の設定も可能 n stanコードの抽出が可能 n 事後分布や予測値の可視化関数が便利
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ Reference n 松浦 健太郎(2016)『StanとRでベイズ統計モ デリング』⽯⽥ 基広監修,共⽴出版 n John
K. Kruschke(2017)『ベイズ統計モデ リング: R,JAGS, Stanによるチュートリアル 原 著第⼆版』前⽥ 和寛 ・⼩杉 考司監訳,共⽴出版 n das_Kinoさんブログ『brmsパッケージを⽤い たベイズモデリング⼊⾨』https://das- kino.hatenablog.com/entry/2018/12/15/230938
ベイズ統計モデリングによるデータ分析⼊⾨ brmsの使い⽅ Enjoy!