Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to land an entry level DS job
Search
Shanelle Recheta
March 22, 2021
Technology
0
720
How to land an entry level DS job
Here's a talk from Amber Teng on her journey to landing an entry level DS job
Shanelle Recheta
March 22, 2021
Tweet
Share
More Decks by Shanelle Recheta
See All by Shanelle Recheta
How to get away with an entry level job in tech
titaofdata
0
31
Globe 5G Hackathon Enablement Workshops
titaofdata
0
74
Kybi Pitch Deck
titaofdata
0
170
Team STP: PLASTIC 3R HACKS PH
titaofdata
0
280
Communication and listening habits of different people
titaofdata
0
85
Antukin - mobile time tracking app
titaofdata
1
230
CaRE PH Pitch Tour
titaofdata
0
160
Kuptura x Impact Hub Asia
titaofdata
0
150
How to track your hours with IFTTT
titaofdata
0
480
Other Decks in Technology
See All in Technology
Lightdashの利活用状況 ー導入から2年経った現在地_20250409
hirokiigeta
2
270
Micro Frontends: Necessity, Implementation, and Challenges
rainerhahnekamp
1
340
食べログが挑む!飲食店ネット予約システムで自動テスト無双して手動テストゼロを実現する戦略
hagevvashi
1
160
All You Need Is Kusa 〜Slackデータで始めるデータドリブン〜
jonnojun
0
140
Amazon CloudWatch Application Signals ではじめるバーンレートアラーム / Burn rate alarm with Amazon CloudWatch Application Signals
ymotongpoo
5
300
自分の軸足を見つけろ
tsuemura
2
580
YOLOv10~v12
tenten0727
3
850
大規模サービスにおける カスケード障害
takumiogawa
3
800
システムとの会話から生まれる先手のDevOps
kakehashi
PRO
0
210
Lakeflow Connectのご紹介
databricksjapan
0
100
古き良き Laravel のシステムは関数型スタイルでリファクタできるのか
leveragestech
1
630
やさしいMCP入門
minorun365
PRO
147
95k
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.4k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
30k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
740
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
23
2.6k
We Have a Design System, Now What?
morganepeng
52
7.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Gamification - CAS2011
davidbonilla
81
5.2k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
Build The Right Thing And Hit Your Dates
maggiecrowley
35
2.6k
Transcript
5 Tips for breaking into data science Amber Teng
About Me
Part 1: Learning the basics Part 2: Showcasing your skills
Part 3: Landing a Job Part 4:Collaboration and Beyond
Part 1: Learning the basics
Tip #1: Learn how to Code Languages: - Python -
SQL - *R - *HTML/CSS - *Excel
Tip #1: Learn how to Code Packages: - SciKit-Learn -
NumPy - SciPy - Pandas - Matplotlib - Seaborn - NLTK, Gensim
Tip #2: Brush up on your math Probability & Statistics:
- Random Variables - Expectation - Parametric Models - Bayes’ Theorem - Probability Distributions - Regression Models
Tip #2: Brush up on your math Linear Algebra: -
Representing problems in linear algebra - Cosine similarity - Matrix Operations - PCA and SVD
Part 2: Showcasing Your Skills
Tip #3: Build, Build, and Build Creating Project Portfolios &
Sharing Your Ideas - Github - Personal Website (getforge, bootstrap) - Medium (towards data science) - Deployment (Heroku, Flask)
Part 3: Landing a Job
Tip #4: Be Prepared - Have an elevator pitch -
Practice interviewing regularly - Know your resume by heart - Diligence is key - Progress is a process: Be prepared for ups and downs
Part 4: Collaboration and Beyond
Tip #5: Connect and Collaborate Connecting with the Data Science
Community: - Twitter - LinkedIn - Conferences - Slack Groups - Hackathons Pass it forward: - Contribute to FTWFoundation! - Mentorship + TA Roles - Data science for social good (ethics) - Data Science para sa bayan
1. Learn to Code 2. Learn Math 3. Keep Building
4. Be prepared 5. Pass it forward
Q & A
Thank you!
[email protected]
@ambervteng in/angelavteng
Appendix: Resources and Links - Udemy Courses: - https://www.udemy.com/course/python-for-dat a-science-and-machine-learning-bootcamp/lea
rn/lecture/5733180?start=0#overview - MIT OCW: - https://ocw.mit.edu/courses/electrical-engineeri ng-and-computer-science/6-041sc-probabilistic -systems-analysis-and-applied-probability-fall- 2013/index.htm - YouTube Channels: - https://www.youtube.com/channel/UCxX9wt5F WQUAAz4UrysqK9A - Online Forums + Websites: - https://stackexchange.com/ - https://www.kaggle.com/ - https://sqlzoo.net/ - MOOCS/Course Resources: - https://cims.nyu.edu/~cfgranda/pages/DSGA1 002_fall15/index.html - https://github.com/jakevdp/PythonDataScience Handbook/blob/master/notebooks/01.00-IPyth on-Beyond-Normal-Python.ipynb - Medium Articles: - https://towardsdatascience.com/dealing-with-m ulticlass-data-78a1a27c5dcc - https://towardsdatascience.com/15-data-scien ce-slack-communities-to-join-8fac301bd6ce - Career + Interview Prep Resources: - https://www.brown.edu/campus-life/support/car eerlab/undergraduate-0/resumes-cover-letters- and-online-profiles - https://leetcode.com/problemset/all/