Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to land an entry level DS job
Search
Shanelle Recheta
March 22, 2021
Technology
0
710
How to land an entry level DS job
Here's a talk from Amber Teng on her journey to landing an entry level DS job
Shanelle Recheta
March 22, 2021
Tweet
Share
More Decks by Shanelle Recheta
See All by Shanelle Recheta
How to get away with an entry level job in tech
titaofdata
0
25
Globe 5G Hackathon Enablement Workshops
titaofdata
0
64
Kybi Pitch Deck
titaofdata
0
130
Team STP: PLASTIC 3R HACKS PH
titaofdata
0
240
Communication and listening habits of different people
titaofdata
0
75
Antukin - mobile time tracking app
titaofdata
1
210
CaRE PH Pitch Tour
titaofdata
0
150
Kuptura x Impact Hub Asia
titaofdata
0
120
How to track your hours with IFTTT
titaofdata
0
440
Other Decks in Technology
See All in Technology
Postmanの日本市場におけるDevRel (的) 活動 / Postman's DevRelish activities in Japan
yokawasa
1
110
利きプロセススケジューラ
sat
PRO
4
1.6k
TinyGoを使ったVSCode拡張機能実装
askua
2
170
Microsoft Intune アプリのトラブルシューティング
sophiakunii
1
160
Observability を実現するためにアセットを活用しよう(AWS 秋の Observability 祭り ~明日使えるアセット祭り~ )
tsujiba
0
120
フロントエンド メタフレームワーク 選定の際に考えたこと
yuppeeng
0
430
DatabricksにおけるLLMOpsのベストプラクティス
taka_aki
4
1.4k
新卒1年目が挑む!生成AI × マルチエージェントで実現する次世代オンボーディング / operation-ai-onboarding
cyberagentdevelopers
PRO
1
190
DynamoDBの"Replacement"時にデータが消されないようにCustom Resource Provider Frameworkでカスタムリソース作ってみた件
diggymo
0
120
AWSコンテナ本出版から3年経った今、もし改めて執筆し直すなら / If I revise our container book
iselegant
18
4.2k
AI機能の開発運用のリアルと今後のリアル
akiroom
0
160
Commitment vs Harrisonism - Keynote for Scrum Niseko 2024
miholovesq
6
1.4k
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Writing Fast Ruby
sferik
626
61k
Side Projects
sachag
452
42k
Ruby is Unlike a Banana
tanoku
96
11k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Power of CSS Pseudo Elements
geoffreycrofte
72
5.3k
Thoughts on Productivity
jonyablonski
67
4.3k
Practical Orchestrator
shlominoach
186
10k
Producing Creativity
orderedlist
PRO
341
39k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Designing Experiences People Love
moore
138
23k
Transcript
5 Tips for breaking into data science Amber Teng
About Me
Part 1: Learning the basics Part 2: Showcasing your skills
Part 3: Landing a Job Part 4:Collaboration and Beyond
Part 1: Learning the basics
Tip #1: Learn how to Code Languages: - Python -
SQL - *R - *HTML/CSS - *Excel
Tip #1: Learn how to Code Packages: - SciKit-Learn -
NumPy - SciPy - Pandas - Matplotlib - Seaborn - NLTK, Gensim
Tip #2: Brush up on your math Probability & Statistics:
- Random Variables - Expectation - Parametric Models - Bayes’ Theorem - Probability Distributions - Regression Models
Tip #2: Brush up on your math Linear Algebra: -
Representing problems in linear algebra - Cosine similarity - Matrix Operations - PCA and SVD
Part 2: Showcasing Your Skills
Tip #3: Build, Build, and Build Creating Project Portfolios &
Sharing Your Ideas - Github - Personal Website (getforge, bootstrap) - Medium (towards data science) - Deployment (Heroku, Flask)
Part 3: Landing a Job
Tip #4: Be Prepared - Have an elevator pitch -
Practice interviewing regularly - Know your resume by heart - Diligence is key - Progress is a process: Be prepared for ups and downs
Part 4: Collaboration and Beyond
Tip #5: Connect and Collaborate Connecting with the Data Science
Community: - Twitter - LinkedIn - Conferences - Slack Groups - Hackathons Pass it forward: - Contribute to FTWFoundation! - Mentorship + TA Roles - Data science for social good (ethics) - Data Science para sa bayan
1. Learn to Code 2. Learn Math 3. Keep Building
4. Be prepared 5. Pass it forward
Q & A
Thank you!
[email protected]
@ambervteng in/angelavteng
Appendix: Resources and Links - Udemy Courses: - https://www.udemy.com/course/python-for-dat a-science-and-machine-learning-bootcamp/lea
rn/lecture/5733180?start=0#overview - MIT OCW: - https://ocw.mit.edu/courses/electrical-engineeri ng-and-computer-science/6-041sc-probabilistic -systems-analysis-and-applied-probability-fall- 2013/index.htm - YouTube Channels: - https://www.youtube.com/channel/UCxX9wt5F WQUAAz4UrysqK9A - Online Forums + Websites: - https://stackexchange.com/ - https://www.kaggle.com/ - https://sqlzoo.net/ - MOOCS/Course Resources: - https://cims.nyu.edu/~cfgranda/pages/DSGA1 002_fall15/index.html - https://github.com/jakevdp/PythonDataScience Handbook/blob/master/notebooks/01.00-IPyth on-Beyond-Normal-Python.ipynb - Medium Articles: - https://towardsdatascience.com/dealing-with-m ulticlass-data-78a1a27c5dcc - https://towardsdatascience.com/15-data-scien ce-slack-communities-to-join-8fac301bd6ce - Career + Interview Prep Resources: - https://www.brown.edu/campus-life/support/car eerlab/undergraduate-0/resumes-cover-letters- and-online-profiles - https://leetcode.com/problemset/all/