Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to land an entry level DS job
Search
Shanelle Recheta
March 22, 2021
Technology
0
720
How to land an entry level DS job
Here's a talk from Amber Teng on her journey to landing an entry level DS job
Shanelle Recheta
March 22, 2021
Tweet
Share
More Decks by Shanelle Recheta
See All by Shanelle Recheta
How to get away with an entry level job in tech
titaofdata
0
30
Globe 5G Hackathon Enablement Workshops
titaofdata
0
69
Kybi Pitch Deck
titaofdata
0
150
Team STP: PLASTIC 3R HACKS PH
titaofdata
0
270
Communication and listening habits of different people
titaofdata
0
83
Antukin - mobile time tracking app
titaofdata
1
230
CaRE PH Pitch Tour
titaofdata
0
160
Kuptura x Impact Hub Asia
titaofdata
0
140
How to track your hours with IFTTT
titaofdata
0
470
Other Decks in Technology
See All in Technology
開発スピードは上がっている…品質はどうする? スピードと品質を両立させるためのプロダクト開発の進め方とは #DevSumi #DevSumiB / Agile And Quality
nihonbuson
2
3k
2.5Dモデルのすべて
yu4u
2
880
リアルタイム分析データベースで実現する SQLベースのオブザーバビリティ
mikimatsumoto
0
1.4k
Classmethod AI Talks(CATs) #17 司会進行スライド(2025.02.19) / classmethod-ai-talks-aka-cats_moderator-slides_vol17_2025-02-19
shinyaa31
0
120
次世代KYC活動報告 / 20250219-BizDay17-KYC-nextgen
oidfj
0
260
現場で役立つAPIデザイン
nagix
33
12k
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
6
760
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
120
SA Night #2 FinatextのSA思想/SA Night #2 Finatext session
satoshiimai
1
140
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
ソフトウェアエンジニアと仕事するときに知っておいたほうが良いこと / Key points for working with software engineers
pinkumohikan
0
100
ユーザーストーリーマッピングから始めるアジャイルチームと並走するQA / Starting QA with User Story Mapping
katawara
0
210
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
137
6.8k
Gamification - CAS2011
davidbonilla
80
5.1k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Navigating Team Friction
lara
183
15k
Building an army of robots
kneath
303
45k
Rails Girls Zürich Keynote
gr2m
94
13k
Building Applications with DynamoDB
mza
93
6.2k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
How to Ace a Technical Interview
jacobian
276
23k
Designing for humans not robots
tammielis
250
25k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
Transcript
5 Tips for breaking into data science Amber Teng
About Me
Part 1: Learning the basics Part 2: Showcasing your skills
Part 3: Landing a Job Part 4:Collaboration and Beyond
Part 1: Learning the basics
Tip #1: Learn how to Code Languages: - Python -
SQL - *R - *HTML/CSS - *Excel
Tip #1: Learn how to Code Packages: - SciKit-Learn -
NumPy - SciPy - Pandas - Matplotlib - Seaborn - NLTK, Gensim
Tip #2: Brush up on your math Probability & Statistics:
- Random Variables - Expectation - Parametric Models - Bayes’ Theorem - Probability Distributions - Regression Models
Tip #2: Brush up on your math Linear Algebra: -
Representing problems in linear algebra - Cosine similarity - Matrix Operations - PCA and SVD
Part 2: Showcasing Your Skills
Tip #3: Build, Build, and Build Creating Project Portfolios &
Sharing Your Ideas - Github - Personal Website (getforge, bootstrap) - Medium (towards data science) - Deployment (Heroku, Flask)
Part 3: Landing a Job
Tip #4: Be Prepared - Have an elevator pitch -
Practice interviewing regularly - Know your resume by heart - Diligence is key - Progress is a process: Be prepared for ups and downs
Part 4: Collaboration and Beyond
Tip #5: Connect and Collaborate Connecting with the Data Science
Community: - Twitter - LinkedIn - Conferences - Slack Groups - Hackathons Pass it forward: - Contribute to FTWFoundation! - Mentorship + TA Roles - Data science for social good (ethics) - Data Science para sa bayan
1. Learn to Code 2. Learn Math 3. Keep Building
4. Be prepared 5. Pass it forward
Q & A
Thank you!
[email protected]
@ambervteng in/angelavteng
Appendix: Resources and Links - Udemy Courses: - https://www.udemy.com/course/python-for-dat a-science-and-machine-learning-bootcamp/lea
rn/lecture/5733180?start=0#overview - MIT OCW: - https://ocw.mit.edu/courses/electrical-engineeri ng-and-computer-science/6-041sc-probabilistic -systems-analysis-and-applied-probability-fall- 2013/index.htm - YouTube Channels: - https://www.youtube.com/channel/UCxX9wt5F WQUAAz4UrysqK9A - Online Forums + Websites: - https://stackexchange.com/ - https://www.kaggle.com/ - https://sqlzoo.net/ - MOOCS/Course Resources: - https://cims.nyu.edu/~cfgranda/pages/DSGA1 002_fall15/index.html - https://github.com/jakevdp/PythonDataScience Handbook/blob/master/notebooks/01.00-IPyth on-Beyond-Normal-Python.ipynb - Medium Articles: - https://towardsdatascience.com/dealing-with-m ulticlass-data-78a1a27c5dcc - https://towardsdatascience.com/15-data-scien ce-slack-communities-to-join-8fac301bd6ce - Career + Interview Prep Resources: - https://www.brown.edu/campus-life/support/car eerlab/undergraduate-0/resumes-cover-letters- and-online-profiles - https://leetcode.com/problemset/all/