Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文読み】GCVAE-GAN Fine-Grained Image Generation t...
Search
Kazusa
January 26, 2018
0
130
【論文読み】GCVAE-GAN Fine-Grained Image Generation through Asymmetric Training
Kazusa
January 26, 2018
Tweet
Share
More Decks by Kazusa
See All by Kazusa
20190208_MLSE_NeurIPS2018_tkazusa.pdf
tkazusa
1
760
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
tkazusa
2
2.4k
機械学習どこから手をつけよう? Google DevFest 2018 Tokyo
tkazusa
2
1.3k
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
tkazusa
0
340
【論文読み】Graph Convolutional Networks for Classification with a Structured
tkazusa
0
67
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
The Cult of Friendly URLs
andyhume
79
6.4k
KATA
mclloyd
29
14k
Balancing Empowerment & Direction
lara
1
330
Optimising Largest Contentful Paint
csswizardry
37
3.3k
The Language of Interfaces
destraynor
158
25k
Stop Working from a Prison Cell
hatefulcrawdad
269
20k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Embracing the Ebb and Flow
colly
86
4.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Transcript
CVAE-GAN Fine Grained Image Generation though Asymmetric Training 2018/1/26 AI開発部論文読み会
上総 虎智
0.Infomation
1.Introduction • あるIdentityを持った様々なカテゴリーの画像を生成したい • VAEとGANを組み合わせたモデルを提案する • しかし、ナイーブにはうまくいかない、なぜならばVAEの画像はぼやける からCriminatorが簡単に偽物と判別できる • 本物のデータ群の平均の特徴量とのL2距離を損失関数として採用
• 勾配消失が緩和される • Mean feature matching はモード崩壊を軽減するが、モード崩壊は完全 には防げない。ここにVAEとGANの組み合わせが効く。 -潜在空間と画像空間を明確に関連付ける -再構成誤差が画像の構造を保つ • よりリアルな画像を生成する、GANより学習早い • 画像生成、塗り絵、属性変換に役立つ
2.Related Work
3. Our Formulation of CVAE-GAN Mean Feature matching を導入。Mode collapseを
防ぐのが一番の目的(言い過ぎ?) : バッチ毎にクラス関係無く本物か偽物か : あるxについてクラスごとで比較している : 再構成誤差+Feature Matching Loss関数の重みはハイパラ。。。
4.Analysis of Toy Example Mean Feature Mappingが生成されるデータの多様性に寄与していると読み取れる。
5. Experiments 色々実験したよ • 5.1. Visualization comparison with other models
• 5.2. Quantitative Comparison • 5.3. Attributes Morphing • 5.4. Image Inpainting • 5.5. Comparing Different Combination of Losses • 5.6. CVAEGAN for Data Augmentation
5.1. Visualization comparison with other models CVAE-GANの良さは、Realである、画像群の中で多様性がある。
5.2. Quantitative Comparison • Discriminability:学習済GoogleNetでの識別性 • Realism&Diversity:KLダイバージェンスの期待値 5.3. Attributes Morphing
• 潜在変数を徐々に変化させて生成
• Webから拾ってきた画像を一部マスク。何回かCVAE-GANにて画像生成。 5.4. Image Inpainting
5.5. Comparing Different Combination of Losses 5.6. CVAEGAN for Data
Augmentation Generater部分のloss関数を色々変えてみたよ。
• Mean Feature Matching良いよ • 様々な応用法が考えられる • 未知のカテゴリーに含まれるようなデータをどうかして生成したいよ 6.Conclusion