Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文読み】GCVAE-GAN Fine-Grained Image Generation t...
Search
Kazusa
January 26, 2018
0
130
【論文読み】GCVAE-GAN Fine-Grained Image Generation through Asymmetric Training
Kazusa
January 26, 2018
Tweet
Share
More Decks by Kazusa
See All by Kazusa
20190208_MLSE_NeurIPS2018_tkazusa.pdf
tkazusa
1
760
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
tkazusa
2
2.4k
機械学習どこから手をつけよう? Google DevFest 2018 Tokyo
tkazusa
2
1.3k
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
tkazusa
0
340
【論文読み】Graph Convolutional Networks for Classification with a Structured
tkazusa
0
67
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
950
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
820
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Adopting Sorbet at Scale
ufuk
77
9.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
GraphQLとの向き合い方2022年版
quramy
49
14k
The World Runs on Bad Software
bkeepers
PRO
69
11k
How GitHub (no longer) Works
holman
314
140k
The Invisible Side of Design
smashingmag
301
51k
Six Lessons from altMBA
skipperchong
28
3.9k
Transcript
CVAE-GAN Fine Grained Image Generation though Asymmetric Training 2018/1/26 AI開発部論文読み会
上総 虎智
0.Infomation
1.Introduction • あるIdentityを持った様々なカテゴリーの画像を生成したい • VAEとGANを組み合わせたモデルを提案する • しかし、ナイーブにはうまくいかない、なぜならばVAEの画像はぼやける からCriminatorが簡単に偽物と判別できる • 本物のデータ群の平均の特徴量とのL2距離を損失関数として採用
• 勾配消失が緩和される • Mean feature matching はモード崩壊を軽減するが、モード崩壊は完全 には防げない。ここにVAEとGANの組み合わせが効く。 -潜在空間と画像空間を明確に関連付ける -再構成誤差が画像の構造を保つ • よりリアルな画像を生成する、GANより学習早い • 画像生成、塗り絵、属性変換に役立つ
2.Related Work
3. Our Formulation of CVAE-GAN Mean Feature matching を導入。Mode collapseを
防ぐのが一番の目的(言い過ぎ?) : バッチ毎にクラス関係無く本物か偽物か : あるxについてクラスごとで比較している : 再構成誤差+Feature Matching Loss関数の重みはハイパラ。。。
4.Analysis of Toy Example Mean Feature Mappingが生成されるデータの多様性に寄与していると読み取れる。
5. Experiments 色々実験したよ • 5.1. Visualization comparison with other models
• 5.2. Quantitative Comparison • 5.3. Attributes Morphing • 5.4. Image Inpainting • 5.5. Comparing Different Combination of Losses • 5.6. CVAEGAN for Data Augmentation
5.1. Visualization comparison with other models CVAE-GANの良さは、Realである、画像群の中で多様性がある。
5.2. Quantitative Comparison • Discriminability:学習済GoogleNetでの識別性 • Realism&Diversity:KLダイバージェンスの期待値 5.3. Attributes Morphing
• 潜在変数を徐々に変化させて生成
• Webから拾ってきた画像を一部マスク。何回かCVAE-GANにて画像生成。 5.4. Image Inpainting
5.5. Comparing Different Combination of Losses 5.6. CVAEGAN for Data
Augmentation Generater部分のloss関数を色々変えてみたよ。
• Mean Feature Matching良いよ • 様々な応用法が考えられる • 未知のカテゴリーに含まれるようなデータをどうかして生成したいよ 6.Conclusion