Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
Search
Kazusa
July 01, 2018
Technology
0
340
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
機械学習工学研究会サマーワークショップ ポジションペーパー
Kazusa
July 01, 2018
Tweet
Share
More Decks by Kazusa
See All by Kazusa
20190208_MLSE_NeurIPS2018_tkazusa.pdf
tkazusa
1
760
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
tkazusa
2
2.4k
機械学習どこから手をつけよう? Google DevFest 2018 Tokyo
tkazusa
2
1.3k
【論文読み】GCVAE-GAN Fine-Grained Image Generation through Asymmetric Training
tkazusa
0
130
【論文読み】Graph Convolutional Networks for Classification with a Structured
tkazusa
0
67
Other Decks in Technology
See All in Technology
生成AIをテストプロセスに活用し"よう"としている話 #jasstnano
makky_tyuyan
0
250
DB 醬,嗨!哪泥嘎斯基?
line_developers_tw
PRO
0
940
Snowflake Intelligenceで実現できるノーコードAI活用
takumimukaiyama
1
290
IIWレポートからみるID業界で話題のMCP
fujie
0
610
監視のこれまでとこれから/sakura monitoring seminar 2025
fujiwara3
10
2.5k
CSS、JSをHTMLテンプレートにまとめるフロントエンド戦略
d120145
0
170
IAMのマニアックな話 2025を執筆して、 見えてきたAWSアカウント管理の現在
nrinetcom
PRO
4
620
標準技術と独自システムで作る「つらくない」SaaS アカウント管理 / Effortless SaaS Account Management with Standard Technologies & Custom Systems
yuyatakeyama
2
190
Cloud Native Scalability for Internal Developer Platforms
hhiroshell
2
490
(非公式) AWS Summit Japan と 海浜幕張 の歩き方 2025年版
coosuke
PRO
1
310
OCI Oracle Database Services新機能アップデート(2025/03-2025/05)
oracle4engineer
PRO
1
200
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
450
Featured
See All Featured
Building an army of robots
kneath
306
45k
Stop Working from a Prison Cell
hatefulcrawdad
269
20k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
43
2.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Designing Experiences People Love
moore
142
24k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
KATA
mclloyd
29
14k
Making the Leap to Tech Lead
cromwellryan
134
9.3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Transcript
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案 2018年7月1日(日) 株式会社ブレインパッド 上総 虎智
Analytics Innovation Company 2 ©BrainPad Inc. 本日お話すること • 弊社は受託分析及び開発にてお客様を支援させて頂いている •
各案件では分析官, 機械学習エンジニア, ソフトウェアエンジニアなどがチームを組んで3~5 人でプロジェクトに取り組んでいる 背景 • 機械学習システムの開発では、要件決まらない(当初から大きく変更される), PoC貧乏に陥 る、せっかく作ったものが現場で受け入れられない, といった課題が出る • 特に要件定義についてはクライアント毎, 取り組む課題ごとに試行錯誤しながら実施しており, その品質の平準化に取り組めていない 取り組みたい課題 • 概念検証(PoC)で機能をどう満たすのかという「How」の部分について試行錯誤と学習 • 概念検証(PoC)から得られた知見を目的やユースケースなど「What」のについて反映させる 試行錯誤と学習 提案手法 • どうすれば適切にWhatやHowを具体化できるのか、その方法論について 皆様と議論させて頂きたい内容
Analytics Innovation Company 3 ©BrainPad Inc. 取り組みたい課題 上記のようにPoCにて機能要求を満たすことができるか検証を実施するため, プロジェクト開始当初に 決めきれない.
さらに, • PoCの結果によってはビジネス要件や機能要件を変更することもある • ビジネス要件やシステム要件の変更に伴い, 新たに検証しなければ行けない観点が追加されるこ ともある 機械学習システムの要件定義が難しく, 何をつくるべきかや開発後どのように活用するが 不明瞭であるために”PoC貧乏”が生まれてしまう. ビジネス要件 • 目的 • 目標 • ユースケース など システム要件 • 機能要件 • 機械学習によって達成し得るもの • 機会学習を用いないもの • 非機能要件 など PoCの 対象となる部分
Analytics Innovation Company 4 ©BrainPad Inc. 提案手法 機能要件に対する 機械学習による 実現方法に関する試行錯誤・検証
利用者からの ビジネス要件についての フィードバック システム要件 ・機能要件 ・非機能要件 など ビジネス要件 ・目的 ・目標 ・ユースケース など 概念検証(PoC) プロトタイピング ビジネス要件の見直しや具体化 システム要件の見直しや具体化 ビ ジ ネ ス 要 件 の 見 直 し 要件を満た す 要件を満たさない PoC及びプロトタイピングによる検証結果から「何を作るのか」と「どのように作るのか」について のフィードバックを要件に反映させて除々に具体化する. • 概念検証(PoC)で機能をどう満たすのかという「How」の部分について試行錯誤と学習. • 概念検証(PoC)から得られた知見を目的やユースケースなど「What」のについて反映させる試 行錯誤と学習
Analytics Innovation Company 5 ©BrainPad Inc. 機能要件に対する 機械学習による 実現方法に関する試行錯誤・検証 利用者からの
ビジネス要件についての フィードバック システム要件 ・機能要件 ・非機能要件 など ビジネス要件 ・目的 ・目標 ・ユースケース など 概念検証(PoC) プロトタイピング ビジネス要件の見直しや具体化 システム要件の見直しや具体化 ビ ジ ネ ス 要 件 の 見 直 し 要件を満たす 要件を満たさない 本提案についての懸念点 要件や機能要件を達成するための手段(機械学習)の具体化には、適切な検証と適切な フィードバックを得ることが重要 ・システム要件, 機能要件から導かれるPoCでの検証項目の設定 ・検証結果のフィードバックを受けた際のビジネス要件の見直しや具体化 ・検証結果のフィードバックを受けた際のシステム要件の具体化 下記を適切に実施することが反復的にPoCを含んだ要件定義では重要だと考える。実務では特に適切 なPoCの検証項目の設定で苦労しているプロジェクトが散見される
Analytics Innovation Company 6 ©BrainPad Inc. 明らかにしたい論点 下記のような論点について皆様とお話できたらと思います。 • 機械学習システム開発における効果的な要件定義の方法
• 機械学習システムのための概念検証(PoC)での検証項目の設定方法 • 検証結果のフィードバック、要件定義への反映のさせ方
Analytics Innovation Company ©BrainPad Inc. 7 本資料は、未刊行文書として日本及び各国の著作権法に基づき保護されております。本資料には、株式会社ブレインパッド所有の特定情報が 含まれており、これら情報に基づく本資料の内容は、御社以外の第三者に開示されること、また、本資料を評価する以外の目的で、その一部ま たは全文を複製、使用、公開することは、禁止されています。また、株式会社ブレインパッドによる書面での許可なく、それら情報の一部または全 文を使用または公開することは、いかなる場合も禁じられております。
株式会社ブレインパッド 〒108-0071 東京都港区白金台3-2-10 白金台ビル TEL:03-6721-7002 FAX:03-6721-7010 www.brainpad.co.jp
[email protected]
Analytics Innovation Company