Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
Search
Kazusa
July 01, 2018
Technology
0
360
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
機械学習工学研究会サマーワークショップ ポジションペーパー
Kazusa
July 01, 2018
Tweet
Share
More Decks by Kazusa
See All by Kazusa
20190208_MLSE_NeurIPS2018_tkazusa.pdf
tkazusa
1
780
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
tkazusa
2
2.5k
機械学習どこから手をつけよう? Google DevFest 2018 Tokyo
tkazusa
2
1.3k
【論文読み】GCVAE-GAN Fine-Grained Image Generation through Asymmetric Training
tkazusa
0
140
【論文読み】Graph Convolutional Networks for Classification with a Structured
tkazusa
0
69
Other Decks in Technology
See All in Technology
特別捜査官等研修会
nomizone
0
540
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
200
Agent Skillsがハーネスの垣根を超える日
gotalab555
6
3.9k
Authlete で実装する MCP OAuth 認可サーバー #CIMD の実装を添えて
watahani
0
150
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.2k
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
4
810
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
760
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
18
7.5k
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
1.2k
Snowflake だけで実現する “自立的データ品質管理” ~Data Quality Monitoring 解説 ~@ BUILD Meetup: TOKYO 2025
ryo_suzuki
0
130
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
320
ActiveJobUpdates
igaiga
1
310
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Statistics for Hackers
jakevdp
799
230k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
47k
Designing for humans not robots
tammielis
254
26k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
150
Color Theory Basics | Prateek | Gurzu
gurzu
0
150
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
950
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.1k
sira's awesome portfolio website redesign presentation
elsirapls
0
89
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
How to Talk to Developers About Accessibility
jct
1
84
Transcript
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案 2018年7月1日(日) 株式会社ブレインパッド 上総 虎智
Analytics Innovation Company 2 ©BrainPad Inc. 本日お話すること • 弊社は受託分析及び開発にてお客様を支援させて頂いている •
各案件では分析官, 機械学習エンジニア, ソフトウェアエンジニアなどがチームを組んで3~5 人でプロジェクトに取り組んでいる 背景 • 機械学習システムの開発では、要件決まらない(当初から大きく変更される), PoC貧乏に陥 る、せっかく作ったものが現場で受け入れられない, といった課題が出る • 特に要件定義についてはクライアント毎, 取り組む課題ごとに試行錯誤しながら実施しており, その品質の平準化に取り組めていない 取り組みたい課題 • 概念検証(PoC)で機能をどう満たすのかという「How」の部分について試行錯誤と学習 • 概念検証(PoC)から得られた知見を目的やユースケースなど「What」のについて反映させる 試行錯誤と学習 提案手法 • どうすれば適切にWhatやHowを具体化できるのか、その方法論について 皆様と議論させて頂きたい内容
Analytics Innovation Company 3 ©BrainPad Inc. 取り組みたい課題 上記のようにPoCにて機能要求を満たすことができるか検証を実施するため, プロジェクト開始当初に 決めきれない.
さらに, • PoCの結果によってはビジネス要件や機能要件を変更することもある • ビジネス要件やシステム要件の変更に伴い, 新たに検証しなければ行けない観点が追加されるこ ともある 機械学習システムの要件定義が難しく, 何をつくるべきかや開発後どのように活用するが 不明瞭であるために”PoC貧乏”が生まれてしまう. ビジネス要件 • 目的 • 目標 • ユースケース など システム要件 • 機能要件 • 機械学習によって達成し得るもの • 機会学習を用いないもの • 非機能要件 など PoCの 対象となる部分
Analytics Innovation Company 4 ©BrainPad Inc. 提案手法 機能要件に対する 機械学習による 実現方法に関する試行錯誤・検証
利用者からの ビジネス要件についての フィードバック システム要件 ・機能要件 ・非機能要件 など ビジネス要件 ・目的 ・目標 ・ユースケース など 概念検証(PoC) プロトタイピング ビジネス要件の見直しや具体化 システム要件の見直しや具体化 ビ ジ ネ ス 要 件 の 見 直 し 要件を満た す 要件を満たさない PoC及びプロトタイピングによる検証結果から「何を作るのか」と「どのように作るのか」について のフィードバックを要件に反映させて除々に具体化する. • 概念検証(PoC)で機能をどう満たすのかという「How」の部分について試行錯誤と学習. • 概念検証(PoC)から得られた知見を目的やユースケースなど「What」のについて反映させる試 行錯誤と学習
Analytics Innovation Company 5 ©BrainPad Inc. 機能要件に対する 機械学習による 実現方法に関する試行錯誤・検証 利用者からの
ビジネス要件についての フィードバック システム要件 ・機能要件 ・非機能要件 など ビジネス要件 ・目的 ・目標 ・ユースケース など 概念検証(PoC) プロトタイピング ビジネス要件の見直しや具体化 システム要件の見直しや具体化 ビ ジ ネ ス 要 件 の 見 直 し 要件を満たす 要件を満たさない 本提案についての懸念点 要件や機能要件を達成するための手段(機械学習)の具体化には、適切な検証と適切な フィードバックを得ることが重要 ・システム要件, 機能要件から導かれるPoCでの検証項目の設定 ・検証結果のフィードバックを受けた際のビジネス要件の見直しや具体化 ・検証結果のフィードバックを受けた際のシステム要件の具体化 下記を適切に実施することが反復的にPoCを含んだ要件定義では重要だと考える。実務では特に適切 なPoCの検証項目の設定で苦労しているプロジェクトが散見される
Analytics Innovation Company 6 ©BrainPad Inc. 明らかにしたい論点 下記のような論点について皆様とお話できたらと思います。 • 機械学習システム開発における効果的な要件定義の方法
• 機械学習システムのための概念検証(PoC)での検証項目の設定方法 • 検証結果のフィードバック、要件定義への反映のさせ方
Analytics Innovation Company ©BrainPad Inc. 7 本資料は、未刊行文書として日本及び各国の著作権法に基づき保護されております。本資料には、株式会社ブレインパッド所有の特定情報が 含まれており、これら情報に基づく本資料の内容は、御社以外の第三者に開示されること、また、本資料を評価する以外の目的で、その一部ま たは全文を複製、使用、公開することは、禁止されています。また、株式会社ブレインパッドによる書面での許可なく、それら情報の一部または全 文を使用または公開することは、いかなる場合も禁じられております。
株式会社ブレインパッド 〒108-0071 東京都港区白金台3-2-10 白金台ビル TEL:03-6721-7002 FAX:03-6721-7010 www.brainpad.co.jp
[email protected]
Analytics Innovation Company