Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
Search
Kazusa
September 26, 2018
Technology
2
2.5k
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
Kubeflowでモデルをデプロイする時に必要になってくる、学習(実験)の管理やモデル管理について話しました
Kazusa
September 26, 2018
Tweet
Share
More Decks by Kazusa
See All by Kazusa
20190208_MLSE_NeurIPS2018_tkazusa.pdf
tkazusa
1
770
機械学習どこから手をつけよう? Google DevFest 2018 Tokyo
tkazusa
2
1.3k
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
tkazusa
0
350
【論文読み】GCVAE-GAN Fine-Grained Image Generation through Asymmetric Training
tkazusa
0
140
【論文読み】Graph Convolutional Networks for Classification with a Structured
tkazusa
0
67
Other Decks in Technology
See All in Technology
HR Force における DWH の併用事例 ~ サービス基盤としての BigQuery / 分析基盤としての Snowflake ~@Cross Data Platforms Meetup #2「BigQueryと愉快な仲間たち」
ryo_suzuki
0
220
Git in Team
kawaguti
PRO
3
370
AIツールでどこまでデザインを忠実に実装できるのか
oikon48
6
3.4k
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
130
物体検出モデルでシイタケの収穫時期を自動判定してみた。 #devio2025
lamaglama39
0
120
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
1
160
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
スタートアップにおけるこれからの「データ整備」
shomaekawa
2
480
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
2
630
なぜAWSを活かしきれないのか?技術と組織への処方箋
nrinetcom
PRO
5
920
Claude Code Subagents 再入門 ~cc-sddの実装で学んだこと~
gotalab555
6
10k
LLMアプリの地上戦開発計画と運用実践 / 2025.10.15 GPU UNITE 2025
smiyawaki0820
1
570
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Bash Introduction
62gerente
615
210k
Visualization
eitanlees
149
16k
Embracing the Ebb and Flow
colly
88
4.8k
Documentation Writing (for coders)
carmenintech
75
5.1k
How GitHub (no longer) Works
holman
315
140k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
KATA
mclloyd
32
15k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
870
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Transcript
受託分析屋がKubeflow を使って思うこと 2018/9/26 Kubeflow Meetup #1 (Cloud Native Meetup Tokyo
#5) Taketoshi Kazusa @tkazusa
自己紹介 • 上総 虎智 Taketoshi Kazusa • Github: tkazusa /
Twitter: @tkazusa • BrainPad Inc. 分析官 • 最近のおもちゃ Kubeflow 0.1
自己紹介 • 上総 虎智 Taketoshi Kazusa • Github: tkazusa /
Twitter: @tkazusa • BrainPad Inc. 分析官 • 最近のおもちゃ
今日のお題 KubeCon CloudNativeCon Europe 2018
今日のお題
今日のお題
Continuous integration & deployment of models • Every night my
model is automatically retrained on my latest logs • If the new model is better it is automatically pushed into production
MLシステム継続的デプロイこんな感じ? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data ・model ・config Storage k8a k8a Container Repository
MLシステム継続的デプロイこんな感じ? Experiment Jobs (Training) ML Service Services App image ML
Training image ・data ・model ・config Storage k8a k8a Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
MLシステム継続的デプロイこんな感じ? Experiment Jobs (Training) ML Service Services App image ML
Training image ・data ・model ・config Storage k8a k8a Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
なんか良さげ けど、これで全部いける?
Serving自動でいいんでしたっけ? Experiment Jobs (Training) ML Service Services App image ML
Training image ・data ・model ・config Storage k8a k8a Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
ワンクッション挟みたくなる Experiment Jobs (Training) ML Service Services App image ML
Training image ・data Storage k8a k8a ・メトリクスひとつじゃない ・セグメントごとの指標 ・機械学習の公平性 ・学習(実験)時の試行錯誤の 結果を一覧で見たい ・model ・config Serving model ・model ・config ・model ・config Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
ワンクッション挟みたくなる アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・メトリクスひとつじゃない ・セグメントごとの指標 ・機械学習の公平性 ・Train時の試行錯誤の結果を 一覧で見たい ・model ・config Serving model ・model ・config ・model ・config Experiment Management
ワンクッション挟みたくなる アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・メトリクスひとつじゃない ・セグメントごとの指標 ・機械学習の公平性 ・Train時の試行錯誤の結果を 一覧で見たい ・model ・config Serving model ・model ・config ・model ・config IntegrateされるTFMA 一瞬、話題になったCometML 話題にすらならいmlflow
TensorFlow Model Analysis (TFMA) • モデルをデプロイする場合に必要な評価を探索的にも行える • ああ
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理したい • なんなら、必要に応じて検索できて欲しい
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる Katibでいける? 大嶋さんに聞き
たくなった。
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる デ、データ。。。
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる
欲しくない? 僕は欲しい。
人間挟んでServingで終わり? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Container Repository
Serveし終わったモデルってどうしてる? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Serving model Serving model Serving model ・モデルの挙動に対する説明責任 ・機械学習の公平性 ・再現性の担保 ・過去のモデル/データ/コ ンフィグの版管理 Container Repository
過去に作ってServeしたモデルってどうしてる? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Serving model Serving model Serving model ・モデルの挙動に対する説明責任 ・機械学習の公平性 ・再現性の担保 ・過去のモデル/データ/コ ンフィグの版管理 Model Management
過去に作ってServeしたモデルってどうしてる? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Serving model Serving model Serving model ・モデルの挙動に対する説明責任 ・機械学習の公平性 ・再現性の担保 ・過去のモデル/データ/コ ンフィグの版管理 まだない?
試行錯誤中。
まとめ • “Continuous integration & deployment of models“をシンプルに実 装できるならまじ良さげ •
けど、毎日再学習&良ければPushが最適解じゃ無い場合もある • Experiment ManagementやModel Management、Model Analysis に期待しているけど、まだもうちょっと先になるのかな • もしくは他のツールとの組み合わせ?試行錯誤中
ありがとうございました http://www.brainpad.co.jp/recruit/ 株式会社ブレインパッドの採用情報見て下さい
参考情報 • https://schd.ws/hosted_files/kccnceu18/d4/Kubeflow_Deep_Dive.pdf • https://medium.com/tensorflow/introducing-tensorflow-model- analysis-scaleable-sliced-and-full-pass-metrics-5cde7baf0b7b • https://www.mlflow.org/docs/latest/tracking.html#tracking-ui