Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
Search
Kazusa
September 26, 2018
Technology
2
2.5k
受託分析屋がKubeflowを使って思うこと_KubeflowMeetup_1.pdf
Kubeflowでモデルをデプロイする時に必要になってくる、学習(実験)の管理やモデル管理について話しました
Kazusa
September 26, 2018
Tweet
Share
More Decks by Kazusa
See All by Kazusa
20190208_MLSE_NeurIPS2018_tkazusa.pdf
tkazusa
1
780
機械学習どこから手をつけよう? Google DevFest 2018 Tokyo
tkazusa
2
1.3k
機械学習システム開発及び運用にかかる 不確実を考慮した要件定義の考察および提案
tkazusa
0
360
【論文読み】GCVAE-GAN Fine-Grained Image Generation through Asymmetric Training
tkazusa
0
140
【論文読み】Graph Convolutional Networks for Classification with a Structured
tkazusa
0
70
Other Decks in Technology
See All in Technology
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
200
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
140
歴史から学ぶ、Goのメモリ管理基礎
logica0419
2
180
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
58k
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
180
コールドスタンバイ構成でCDは可能か
hiramax
0
130
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
3
690
Everything As Code
yosuke_ai
0
470
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
240
Eight Engineering Unit 紹介資料
sansan33
PRO
0
6.1k
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
270
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.5k
Featured
See All Featured
Odyssey Design
rkendrick25
PRO
0
450
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
HDC tutorial
michielstock
1
290
We Are The Robots
honzajavorek
0
130
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
エンジニアに許された特別な時間の終わり
watany
106
220k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
860
WENDY [Excerpt]
tessaabrams
9
35k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Why Our Code Smells
bkeepers
PRO
340
58k
Transcript
受託分析屋がKubeflow を使って思うこと 2018/9/26 Kubeflow Meetup #1 (Cloud Native Meetup Tokyo
#5) Taketoshi Kazusa @tkazusa
自己紹介 • 上総 虎智 Taketoshi Kazusa • Github: tkazusa /
Twitter: @tkazusa • BrainPad Inc. 分析官 • 最近のおもちゃ Kubeflow 0.1
自己紹介 • 上総 虎智 Taketoshi Kazusa • Github: tkazusa /
Twitter: @tkazusa • BrainPad Inc. 分析官 • 最近のおもちゃ
今日のお題 KubeCon CloudNativeCon Europe 2018
今日のお題
今日のお題
Continuous integration & deployment of models • Every night my
model is automatically retrained on my latest logs • If the new model is better it is automatically pushed into production
MLシステム継続的デプロイこんな感じ? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data ・model ・config Storage k8a k8a Container Repository
MLシステム継続的デプロイこんな感じ? Experiment Jobs (Training) ML Service Services App image ML
Training image ・data ・model ・config Storage k8a k8a Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
MLシステム継続的デプロイこんな感じ? Experiment Jobs (Training) ML Service Services App image ML
Training image ・data ・model ・config Storage k8a k8a Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
なんか良さげ けど、これで全部いける?
Serving自動でいいんでしたっけ? Experiment Jobs (Training) ML Service Services App image ML
Training image ・data ・model ・config Storage k8a k8a Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
ワンクッション挟みたくなる Experiment Jobs (Training) ML Service Services App image ML
Training image ・data Storage k8a k8a ・メトリクスひとつじゃない ・セグメントごとの指標 ・機械学習の公平性 ・学習(実験)時の試行錯誤の 結果を一覧で見たい ・model ・config Serving model ・model ・config ・model ・config Container Repository アプリケーション エンジニア データサイエンティスト MLエンジニア ユーザー
ワンクッション挟みたくなる アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・メトリクスひとつじゃない ・セグメントごとの指標 ・機械学習の公平性 ・Train時の試行錯誤の結果を 一覧で見たい ・model ・config Serving model ・model ・config ・model ・config Experiment Management
ワンクッション挟みたくなる アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・メトリクスひとつじゃない ・セグメントごとの指標 ・機械学習の公平性 ・Train時の試行錯誤の結果を 一覧で見たい ・model ・config Serving model ・model ・config ・model ・config IntegrateされるTFMA 一瞬、話題になったCometML 話題にすらならいmlflow
TensorFlow Model Analysis (TFMA) • モデルをデプロイする場合に必要な評価を探索的にも行える • ああ
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理したい • なんなら、必要に応じて検索できて欲しい
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる Katibでいける? 大嶋さんに聞き
たくなった。
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる デ、データ。。。
Experiment management tools • いつ、だれが、どのスクリプト、どんなハイパラで学習させて、ど んな評価になったのか?が一覧性を持って管理できる • 必要に応じて検索ができる
欲しくない? 僕は欲しい。
人間挟んでServingで終わり? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Container Repository
Serveし終わったモデルってどうしてる? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Serving model Serving model Serving model ・モデルの挙動に対する説明責任 ・機械学習の公平性 ・再現性の担保 ・過去のモデル/データ/コ ンフィグの版管理 Container Repository
過去に作ってServeしたモデルってどうしてる? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Serving model Serving model Serving model ・モデルの挙動に対する説明責任 ・機械学習の公平性 ・再現性の担保 ・過去のモデル/データ/コ ンフィグの版管理 Model Management
過去に作ってServeしたモデルってどうしてる? アプリケーション エンジニア データサイエンティスト MLエンジニア Experiment Jobs (Training) ML Service
Services App image ML Training image ユーザー ・data Storage k8a k8a ・model ・config Serving model ・model ・config ・model ・config Serving model Serving model Serving model ・モデルの挙動に対する説明責任 ・機械学習の公平性 ・再現性の担保 ・過去のモデル/データ/コ ンフィグの版管理 まだない?
試行錯誤中。
まとめ • “Continuous integration & deployment of models“をシンプルに実 装できるならまじ良さげ •
けど、毎日再学習&良ければPushが最適解じゃ無い場合もある • Experiment ManagementやModel Management、Model Analysis に期待しているけど、まだもうちょっと先になるのかな • もしくは他のツールとの組み合わせ?試行錯誤中
ありがとうございました http://www.brainpad.co.jp/recruit/ 株式会社ブレインパッドの採用情報見て下さい
参考情報 • https://schd.ws/hosted_files/kccnceu18/d4/Kubeflow_Deep_Dive.pdf • https://medium.com/tensorflow/introducing-tensorflow-model- analysis-scaleable-sliced-and-full-pass-metrics-5cde7baf0b7b • https://www.mlflow.org/docs/latest/tracking.html#tracking-ui