Upgrade to Pro — share decks privately, control downloads, hide ads and more …

金融時系列のためのデータ拡張入門

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for tonic tonic
March 29, 2024
1.7k

 金融時系列のためのデータ拡張入門

Avatar for tonic

tonic

March 29, 2024
Tweet

Transcript

  1. 3.a. 問題設計 ◼ 分次リターン予測(Optiver) • Kaggle で最近開催された金融コンペの問題設計を利用 • データ範囲: 匿名の200銘柄

    * (480日 * 55 snapshot) • 評価指標: MAE • 目的変数: 各銘柄の60秒後のスペシフィックリターン • 特徴量: NasdaqでのClosing Auction板の集約情報 例) インバランスサイズ、ベスト価格・サイズ、WA …
  2. 3.a. 問題設計 ◼ 日次リターン予測(Jquants API) • Jquants API ライトプランで取得可能な日次データ(4本値、財務情報)を利用 •

    データ範囲: 198銘柄(N225から抽出)* 5年分 • 評価指標: 相関係数 • 目的変数: 各銘柄の日次相対リターン • 特徴量: ファクター別指数ランキングから10個程度ピックアップ 例) ROE、時価総額、移動平均乖離…
  3. 3.a. 問題設計 ◼ モデル・評価方法 • Optiverの解法で用いたNeural Networkのアーキテクチャを使用 • mixupの有無、適用率(※)による精度の違いを調べる •

    特徴量集合に対して、ミニバッチごとにランダムに拡張を行う • mixupのPytorchでの実装はこちら(2023マケデコアドベントカレンダー) ※適用率 … ミニバッチ内でmixupを適用するデータの割合
  4. 3.b. 結果・考察 ◼ 分次リターン予測 … mixupの効果あり • リーダーボードなら、tonicの位置(89位)から -50~+40位くらい ◼

    日次リターン予測 … mixupでむしろ悪化 • ただし、適用率は大きいほど精度が上がる傾向 適用率 相関係数 MAE 0.0 0.2107 6.2440 0.7 0.2122 6.2402 適用率 相関係数 標準誤差 0.0 0.0346 0.0031 0.5 0.0278 0.0044 0.7 0.0280 0.0049 1.0 0.0290 0.0047 分次リターン 日次リターン
  5. 4. まとめ ◼ 金融時系列におけるデータ拡張(mixup)の有効性を検証 ◼ ロバストな問題設計では効果あり! • 汎用かつ手軽にデータを増やせるのでぜひお試しあれ • データ不足で解けなかったタスクも解けるかも?

    ◼ 非ロバストな問題では工夫が必要かも • 今回は特徴量集合をランダムに合成したが…考えられる方法はたくさん • 特徴量を合成 vs 元系列を合成? • 似たデータ点(同日、同銘柄、同セクターetc)を合成? • 分類タスクでソフトラベルを利用?