Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Saturn's Atmosphere Studies with LOFAR

transientskp
December 04, 2012

Saturn's Atmosphere Studies with LOFAR

Philippe Zarka

transientskp

December 04, 2012
Tweet

More Decks by transientskp

Other Decks in Science

Transcript

  1. Saturn's Atmosphere Studies with LOFAR:
    a « pot-pourri »
    P. Zarka & the TKP Planet Working Group
    R. Courtin and the LC0_005 team
    J.-M. Griessmeier and the LC0_023 team

    View Slide

  2. Saturn’s lightning commissioning observations
    • 2010/04/08 : (3h) incoherent sum of 10 stations, 30-78 MHz, 81 μsec x12 kHz, Stokes I, On only
    • 2010/12/17-18 : (16h) incoherent sum of 22 stations, 15-75 MHz, 81 μsec x12 kHz, Stokes I,





    Off=PSR1133 (TBB in //)
    • 2011/07/07-08 : (12h) coherent sum of 5 superterp stations, 20-70 MHz, 1.3 msec x12 kHz
    UIOWA 20100413
    2010-04-08 (098) 19:00 2010-04-09 (099) 01:00
    15,98
    267,44
    0,22
    15,59
    15,98
    16,34
    300,38
    0,23
    15,64
    16,34
    16,69
    333,36
    0,23
    15,70
    16,69
    17,04
    6,37
    0,23
    15,75
    17,04
    17,38
    39,41
    0,24
    15,80
    17,38
    17,72
    72,48
    0,24
    15,85
    17,72
    18,05
    105,57
    0,24
    15,89
    18,05
    19:00 20:00 21:00 22:00 23:00 00:00 01:00
    Orbit 129
    R
    S
    Lon
    Lat
    LT
    L
    2,
    4,
    6,
    8,
    10,
    12,
    14,
    16,
    Frequency (Hz)
    0,
    2,
    4,
    6,
    8,
    10,
    12,
    14,
    dB Above Background (30%)
    Cassini Incoherent Stokes - I
    0 10 20 30 40 50 60
    seconds since 20:30:00
    30
    40
    50
    60
    70
    MHz
    dB
    0.2
    0.4
    0.6
    0.8
    1.0
    Incoherent Stokes - I
    10 20 30 40 50 60
    seconds since 20:31:00
    30
    40
    50
    60
    70
    MHz
    dB
    0.2
    0.4
    0.6
    0.8
    1.0
    1.2
    LOFAR

    View Slide

  3. Nb of Stations f b τ σsky
    1 station 30 MHz 195 kHz 82µs 104 Jy
    10 stations 30 MHz 6 MHz 20ms 37 Jy
    Saturn’s  lightning  @  Earth  ~  10-­‐1000  Jy   (1  Jy  =  10-­‐26  W.m-­‐2.Hz-­‐1)
    σsky  =  2kTsky/(  A  (bτ)1/2) with Tsky ~  1.15×108/f2.5   and  A1  Sta/on
    ~  48λ2/3
    • 2010/04/08 : (3h) incoherent sum of 10 stations, 30-78 MHz, 81 μsec x12 kHz, Stokes I, On only
    • 2010/12/17-18 : (16h) incoherent sum of 22 stations, 15-75 MHz, 81 μsec x12 kHz, Stokes I,





    Off=PSR1133 (TBB in //)
    • 2011/07/07-08 : (12h) coherent sum of 5 superterp stations, 20-70 MHz, 1.3 msec x12 kHz
    RFI  +  SED
    raw  data  (6  MHz)  "On" clean  data  (6  MHz)
    raw  data  (195  kHz)  "~Off"
    Saturn’s lightning commissioning observations

    View Slide

  4. • 2010/04/08 : (3h) incoherent sum of 10 stations, 30-78 MHz, 81 μsec x12 kHz, Stokes I, On only
    • 2010/12/17-18 : (16h) incoherent sum of 22 stations, 15-75 MHz, 81 μsec x12 kHz, Stokes I,





    24 Mz On & 24 MHz Off (=PSR1133)


    (TBB in //)
    • 2011/07/07-08 : (12h) coherent sum of 5 superterp stations, 20-70 MHz, 1.3 msec x12 kHz
    18/12/2010
    03:00 11:00
    SB#
    17/12/2010 - SubBand 50
    Time steps
    Intensity
    Saturn’s lightning commissioning observations

    View Slide

  5. • 2010/04/08 : (3h) incoherent sum of 10 stations, 30-78 MHz, 81 μsec x12 kHz, Stokes I, On only
    • 2010/12/17-18 : (16h) incoherent sum of 22 stations, 15-75 MHz, 81 μsec x12 kHz, Stokes I,





    24 Mz On & 24 MHz Off (=PSR1133)


    (TBB in //)
    • 2011/07/07-08 : (12h) coherent sum of 5 superterp stations, 20-70 MHz, 1.3 msec x12 kHz
    UIOWA 20110627
    2010-12-18 (352) 00:00 2010-12-18 (352) 16:00
    27,47
    292,56
    -0,06
    20,06
    27,47
    26,78
    33,01
    -0,06
    20,11
    26,78
    26,08
    133,41
    -0,07
    20,18
    26,08
    25,35
    233,76
    -0,07
    20,24
    25,35
    24,60
    334,05
    -0,07
    20,32
    24,60
    23,83
    74,27
    -0,07
    20,39
    23,83
    00:00 03:00 06:00 09:00 12:00 15:00
    Orbit 142
    R
    S
    Lon
    Lat
    LT
    L
    2,
    4,
    6,
    8,
    10,
    12,
    14,
    16,
    Frequency (Hz)
    0,
    5,
    10,
    15,
    20,
    dB Above Background (7%)
    PSR 1133 in Off beam on 2010/12/18
    Saturn’s lightning commissioning observations

    View Slide

  6. • 2010/04/08 : (3h) incoherent sum of 10 stations, 30-78 MHz, 81 μsec x12 kHz, Stokes I, On only
    • 2010/12/17-18 : (2x8h) incoherent sum of 22 stations, 15-75 MHz, 81 μsec x12 kHz, Stokes I,





    24 Mz On & 24 MHz Off (=PSR1133)


    (TBB in //)
    • 2011/07/07-08 : (2x6h) coherent sum of 5 superterp stations, 20-70 MHz, 1.3 msec x12 kHz
    20
    70
    MHz
    0 1600
    sec
    20
    70
    MHz
    0 1600
    sec
    Saturn’s lightning commissioning observations

    View Slide

  7. • Statistical detection seems positive ... BUT ...
    • Unsuccessful one-to-one correlation of individual flashes seen by LOFAR and Cassini
    (for the moment tested on 2010/04/08), in spite of severe RFI mitigation
    Saturn’s lightning commissioning observations
    Ex: NDA observations, 14-28 MHz, 90 sec,
    20 msec x 4 kHz resolutions

    View Slide

  8. « If you torture data enough, they will confess » (޸ࢠ ~500 BC)
    « Sometimes there is just too much RFI » (Ter Veen, 3/12/2012)
    → NOT NECESSARILY !
    → INDEED !

    View Slide

  9. [Konovalenko et al., Icarus, 2012]
    Ground-based detection of Saturn’s lightning
    • Dec. 2010 observation at UTR-2/Kharkov with DSP receivers
    10 microsec resolution
    (from waveform capture)
    DM ~ 3x10-5 pc.cm-3
    ∫1
    10(5/L2)dL ~ 5 cm-3/Lmin(UA)

    View Slide

  10. Jean-Mathias Griessmeier LPC2E / OSUC France
    Philippe Zarka LESIA / Observatoire de Paris France
    Julien Girard LESIA / Observatoire de Paris France
    Walid Majid JPL / Caltech USA
    Heino Falcke Radboud Univ. Nijmegen NL
    Alexander Konovalenko IRA Kharkov Ukraine
    LC0_023 : Measuring the energy of Saturn's lightning
    LOFAR TAB data analysis / LOFAR TBB / UTR-2 observations
    Semester : LOFAR Cycle 0
    Abstract
    Lightning-generated radio emission from Saturn has been observed by spacecraft missions (1980,
    1981, and since 2004) and from the ground (since 2006). The highest frequency covered by these
    instruments is 40 MHz; at higher frequencies, the spectrum of Saturn lightning remains unknown.
    LOFAR observations at >40 MHz with high time resolution (5 microsec) would allow to measure the
    slope of the SED spectrum, the fine structure of discharges, and thus determine the energy of the
    discharge, which is currently unknown by many orders of magnitude. This energy is an important input
    for atmospheric chemistry. Extending the observation to lower frequencies (10-40 MHz) would allow to
    study the ionosphere of Saturn.
    Telescopes
    Telescope Modes
    LOFAR Beam Observation
    Applicants
    Name Affiliation Email Country Potential
    observer
    Dr Jean-Mathias Griessmeier LPC2E & OSUC & Obs.
    Paris Nancay
    [email protected]
    -orleans.fr
    France Pi Yes
    Dr Philippe Zarka CNRS - Observatoire de
    Paris (LESIA)
    [email protected] France
    Phd student Julien Girard LESIA - Observatoire de
    Paris Meudon (LESIA -
    [email protected] France
    Griessmeier LC0_023
    Measuring the energy of Saturn's lightning
    [Farrell et al., 2007]
    - ToO / Saturn (Cassini)
    - measure spectrum across LBA band with 5 microsec
    resolution + TBB (5 nsec on bright spikes)
    - « HF » (>30 MHz) spectrum + hi-res time profile
    㱺 flash energy
    - Mars ?

    View Slide

  11. After the giant storm in 2011 ...
    • Storm lasted from 12/2010 to 8/2011, in Northern (summer) hemisphere
    • up to 10 flashes / sec, intensity up to 104 Earth's
    [Fischer et al., 2011]

    View Slide

  12. After the giant storm in 2011 ...
    2011-07-01 (182) 00:00 2011-07-10 (191) 00:00
    44,47
    152,56
    0,27
    15,37
    44,47
    41,05
    328,05
    0,29
    15,77
    41,05
    35,07
    141,94
    0,32
    16,28
    35,08
    25,68
    311,35
    0,35
    17,09
    25,68
    10,14
    93,49
    0,33
    19,72
    10,14
    2011-07-02 2011-07-04 2011-07-06 2011-07-08 2011-07-10
    R
    S
    Lon
    Lat
    LT
    L
    2,
    4,
    6,
    8,
    10,
    12,
    14,
    16,
    Frequency (Hz)
    0,
    2,
    4,
    6,
    8,
    10,
    dB Above Background (10%)

    View Slide

  13. ... Saturn’s amosphere has been quiet for months ...
    2012-11-20 (325) 00:00 2012-12-04 (339) 00:00
    27,72
    321,97
    -44,55
    18,03
    54,59
    11,49
    157,00
    28,24
    11,29
    14,80
    28,34
    192,96
    -31,35
    15,14
    38,86
    2012-11-23 2012-11-28 2012-12-03
    R
    S
    Lon
    Lat
    LT
    L
    2,
    4,
    6,
    8,
    10,
    12,
    14,
    16,
    Frequency (Hz)
    0,
    2,
    4,
    6,
    8,
    10,
    dB Above Background (10%)

    View Slide

  14. But there is more about Saturn’s atmosphere
    with LOFAR ...

    View Slide

  15. Saturn’s observable atmosphere
    from the UV to the microwave domains

    View Slide

  16. Saturn’s temperature profile
    as a function of the H2
    O abundance

    View Slide

  17. LOFAR is expected to probe much deeper
    in Saturn’s atmosphere
    down to pressures of a few kbar
    ν=300 MHz ; λ=100 cm
    Opacity: NH3
    + H2
    O
    ν=100 MHz ; λ=300 cm
    Opacity: neutral & weakly-ionized H2
    O

    View Slide

  18. LOFAR HBA
    H2
    O = 0.2×VF (O/H~0.7×solar)
    H2
    O = 5×VF (O/H~17×solar)
    H2
    O = 10×VF (O/H~34×solar)
    Briggs and Sackett (1989)
    Saturn’s brightness temperature spectrum
    between 10 cm and 300 cm

    View Slide

  19. H2
    O = 0.2×VF (O/H~0.7×solar)
    H2
    O = 5×VF (O/H~17×solar)
    H2
    O = 10×VF (O/H~34×solar)
    Saturn’s disk-integrated flux density
    in the LOFAR HBA range
    Δt = 5h per band

    View Slide

  20. 1 MeV 0.028 MeV
    Flux (cm-2.sr-1.s-1.MeV-1)
    Flux (cm-2.sr-1.s-1.MeV-1)
    !
    Electrons fluxes
    Salammbô-3D
    Modeled synchrotron radiation in the LOFAR HBA range
    Computed 2-D maps
    at 110-300 MHz
    0.1
    0.15
    0.2
    0.25
    0.3
    0.35
    0.4
    0.45
    100 150 200 250 300 350
    Fréquence (MHz)
    Densité de flux (mJy)
    DE=0°
    DE=26°
    @ 8.8 UA
    Computed disk-
    integrated spectrum

    View Slide

  21. Objectives
    • Determine the deep atmospheric water vapor abundance,
    hence the O/H ratio in Saturn’s interior
    • Obtain better constraints for interior models of Saturn,
    i.e. the contribution of H2
    O to the heavy-element component (z)
    • Check the prediction of a negligible level of synchrotron radiation
    • Assess the existence of a weakly-ionized region below 30 kbar
    Expectations
    • good signal-to-noise is expected at least in 3 of the bands
    above 160 MHz (160-172 + 210-222 + 238-250 MHz)
    • a 10% accuracy should allow us to discriminate between
    "under-solar" and "over-solar" H2
    O distributions
    • the accuracy of the O/H determination will strongly depend on
    the quality of the imaging processing and calibration

    View Slide

  22. Régis Courtin LESIA / Observatoire de Paris France
    Daniel Gautier LESIA / Observatoire de Paris France
    Franck Hersant LAB / Observatoire de Bordeaux France
    Mark Hofstadter Jet Propulsion Laboratory USA
    Tobias Owen IfA / University of Hawaii USA
    Nadine Nettelmann Rostock University Germany
    Philippe Zarka LESIA / Observatoire de Paris France
    Cyril Tasse GEPI / Observatoire de Paris France
    Julien Girard LESIA / Observatoire de Paris France
    Jean-Mathias Griessmeier LPC2E / OSUC France
    Angélica Sicard-Piet ONERA Toulouse France
    Lise Lorenzato ONERA / IRAP Toulouse France
    Daniel Santos-Costa SWRI San Antonio USA
    LC0_005 : A determination of the abundance of water
    in Saturn’s deep atmosphere with LOFAR
    Saturn’s Atmosphere & Interior / LOFAR Imaging / Saturn’s Synchrotron Radiation
    Semester : LOFAR Cycle 0
    Abstract
    Lightning-generated radio emission from Saturn has been observed by spacecraft missions (1980,
    1981, and since 2004) and from the ground (since 2006). The highest frequency covered by these
    instruments is 40 MHz; at higher frequencies, the spectrum of Saturn lightning remains unknown.
    LOFAR observations at >40 MHz with high time resolution (5 microsec) would allow to measure the
    slope of the SED spectrum, the fine structure of discharges, and thus determine the energy of the
    discharge, which is currently unknown by many orders of magnitude. This energy is an important input
    for atmospheric chemistry. Extending the observation to lower frequencies (10-40 MHz) would allow to
    study the ionosphere of Saturn.
    Telescopes
    Telescope Modes
    LOFAR Beam Observation
    Applicants
    Name Affiliation Email Country Potential
    observer
    Dr Jean-Mathias Griessmeier LPC2E & OSUC & Obs.
    Paris Nancay
    [email protected]
    -orleans.fr
    France Pi Yes
    Dr Philippe Zarka CNRS - Observatoire de
    Paris (LESIA)
    [email protected] France
    Phd student Julien Girard LESIA - Observatoire de
    Paris Meudon (LESIA -
    [email protected] France
    Griessmeier LC0_023
    Measuring the energy of Saturn's lightning

    View Slide



  23. View Slide