Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MCMCのR-hatは分散分析である
Search
Shota Mori
June 20, 2025
Science
0
510
MCMCのR-hatは分散分析である
Shota Mori
June 20, 2025
Tweet
Share
Other Decks in Science
See All in Science
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
620
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
230
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
NDCG is NOT All I Need
statditto
2
2.5k
研究って何だっけ / What is Research?
ks91
PRO
2
150
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
130
Symfony Console Facelift
chalasr
2
490
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
210
学術講演会中央大学学員会府中支部
tagtag
0
330
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
440
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.8k
Designing for Performance
lara
610
69k
The Language of Interfaces
destraynor
162
25k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
690
The Cult of Friendly URLs
andyhume
79
6.7k
Designing for humans not robots
tammielis
254
26k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
960
Writing Fast Ruby
sferik
630
62k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
MCMCのR-hatは 分散分析である 森翔汰@moricup
Introduction • MCMCのR-hatを知っている人は、これが大きいと 結果の再現性が低いと言えることをご存じでしょう。 • しかし、なぜ再現性が低いと言えるか知る人は少ない印象です。 • 今夜、これを数式で解き明かします!
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが データに合わせた
右寄りの事後分布で 当てはまった
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定 マルコフ鎖ごとに結果がバラつく
分布のお気持ち データの分布は二山 どっちの山に fitしようかな 右の気分 いや、左かも やっぱり 右で
MCMCの再現性を検証したい • 各マルコフ鎖の事後分布の差が 大きいかを確認したい • 各群の差を確認したいようなもの • まるで分散分析 • 実際の統計モデルは複雑
• 可視化には限度がある • そこで R-hat による定量評価 • ベイズ推論ライブラリにも実装されている
R-hatの定義 • 𝑛: マルコフ鎖あたりのサンプル数 • 𝐵: マルコフ鎖間分散(Between) • 𝑊: マルコフ鎖内分散(Within)
𝑅 = 𝑛 − 1 𝑛 𝑊 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊 𝐵 𝑊 = マルコフ鎖間分散 マルコフ鎖内分散 ≈ 群間変動 群内変動 = 𝐹値 つまり、 𝑅が大きいことと、𝐹値が大きいことは同じ! 分散分析
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える!
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える! MCMCのR-hatは、やっぱり分散分析だ!