Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MCMCのR-hatは分散分析である
Search
Shota Mori
June 20, 2025
Science
0
380
MCMCのR-hatは分散分析である
Shota Mori
June 20, 2025
Tweet
Share
Other Decks in Science
See All in Science
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
2
140
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
220
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
190
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
130
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.2k
Machine Learning for Materials (Challenge)
aronwalsh
0
300
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
160
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
340
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
470
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
520
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
490
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
940
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Embracing the Ebb and Flow
colly
86
4.7k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Scaling GitHub
holman
460
140k
Being A Developer After 40
akosma
90
590k
For a Future-Friendly Web
brad_frost
179
9.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Unsuck your backbone
ammeep
671
58k
Speed Design
sergeychernyshev
32
1k
GitHub's CSS Performance
jonrohan
1031
460k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Transcript
MCMCのR-hatは 分散分析である 森翔汰@moricup
Introduction • MCMCのR-hatを知っている人は、これが大きいと 結果の再現性が低いと言えることをご存じでしょう。 • しかし、なぜ再現性が低いと言えるか知る人は少ない印象です。 • 今夜、これを数式で解き明かします!
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが データに合わせた
右寄りの事後分布で 当てはまった
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定 マルコフ鎖ごとに結果がバラつく
分布のお気持ち データの分布は二山 どっちの山に fitしようかな 右の気分 いや、左かも やっぱり 右で
MCMCの再現性を検証したい • 各マルコフ鎖の事後分布の差が 大きいかを確認したい • 各群の差を確認したいようなもの • まるで分散分析 • 実際の統計モデルは複雑
• 可視化には限度がある • そこで R-hat による定量評価 • ベイズ推論ライブラリにも実装されている
R-hatの定義 • 𝑛: マルコフ鎖あたりのサンプル数 • 𝐵: マルコフ鎖間分散(Between) • 𝑊: マルコフ鎖内分散(Within)
𝑅 = 𝑛 − 1 𝑛 𝑊 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊 𝐵 𝑊 = マルコフ鎖間分散 マルコフ鎖内分散 ≈ 群間変動 群内変動 = 𝐹値 つまり、 𝑅が大きいことと、𝐹値が大きいことは同じ! 分散分析
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える!
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える! MCMCのR-hatは、やっぱり分散分析だ!