Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
レムニスケートから楕円関数へ
Search
Naoya Umezaki
October 06, 2018
0
1.4k
レムニスケートから楕円関数へ
MATHPOWER2018での講演スライド。レムニスケートと楕円関数に関わるアーベルの業績について解説。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
0
350
ミケル点とべズーの定理
unaoya
0
770
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
610
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
790
Egisonパターンマッチによる彩色
unaoya
1
560
関数等式と双対性
unaoya
1
730
直交多項式と表現論
unaoya
0
820
導来代数幾何入門
unaoya
0
930
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Building an army of robots
kneath
302
43k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Adopting Sorbet at Scale
ufuk
73
9.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Agile that works and the tools we love
rasmusluckow
327
21k
Rails Girls Zürich Keynote
gr2m
94
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
It's Worth the Effort
3n
183
27k
Transcript
ϨϜχεέʔτ͔Β ପԁؔ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
Ξʔϕϧͱପԁੵ wikipediaΑΓ Ξʔϕϧֶ͕ʹ֮Ίͯ200
ΨεͱϨϜχεέʔτੵ
ࢉज़زԿฏۉ aͱbͷࢉज़ฏۉ a + b 2 aͱbͷزԿฏۉ √ ab
ࢉज़زԿฏۉ a0 = 1, b0 = 1 √ 2 =
0.7071 · · · ͔ΒॳΊͯ࣍ʑ ܁Γฦ͢ɻ a1 = a0 + b0 2 = 0.853553 · · · b1 = √ a0 b0 = 0.840896 · · ·
ࢉज़زԿฏۉ a2 = a1 + b1 2 = 0.847224 ·
· · b2 = √ a1 b1 = 0.847201 · · · a3 = a2 + b2 2 = 0.847213 · · · b3 = √ a2 b2 = 0.847213 · · ·
ϨϜχεέʔτ r2 = cos 2θ O P
ϨϜχεέʔτੵ P Q R PQ2 + QR2 = PR2 √
(dr)2 + (rdθ)2 = ds
ϨϜχεέʔτੵ r2 = cos 2θ 2rdr = −2 sin 2θdθ
4r2(dr)2 = 4 sin2 2θ(dθ)2 = 4(1 − cos2 2θ)(dθ)2 = 4(1 − r4)(dθ)2
ϨϜχεέʔτੵ r4 1 − r4 (dr)2 = r2(dθ)2 ∫ √
(rdθ)2 + (dr)2 = ∫ √ 1 1 − r4 dr
ϨϜχεέʔτੵ s(t) = ∫ P O 1 √ 1 −
r4 dr O P
ପԁੵͷඪ४ܗ r2 = 1 − sin2 θ rdr = −2
cos θ sin θdθ dr = −2 cos θ sin θdθ √ 1 − sin2 θ
ପԁੵͷඪ४ܗ dr √ 1 − r4 = −2 cos θ
sin θdθ √ 1 − (1 − sin2 θ)2 √ 1 − sin2 θ = −2 sin θdθ √ 1 − (1 − sin2 θ)2 = −2 sin θdθ √ 2 sin2 θ − sin4 θ = −2dθ √ 2 − sin2 θ
∫ 1 0 dr √ 1 − r4 = 1
2 ∫ π/2 0 dθ √ 1 − (1/ √ 2)2 sin2 θ) K(k) = ∫ π/2 0 dθ √ 1 − k2 sin2 θ
ϥϯσϯมͱࢉज़زԿฏۉ kn = bn an , kn+1 = bn+1 an+1
ʹରͯ͠ 1 an K(kn ) = 1 an+1 K(kn+1 )
ϧδϟϯυϧͷؔࣜ E(k) = ∫ π/2 0 √ 1 − k2
sin2 θdθ k′2 + k2 = 1 E(k)K(k′) + E(k′)K(k) − K(k)K(k′) = π 2
ϧδϟϯυϧͷؔࣜ ಛʹk = 1 √ 2 ͷ࣌ 2E( 1 √
2 )K( 1 √ 2 ) − K( 1 √ 2 )2 = π 2
·ͱΊ ▶ ϨϜχεέʔτੵପԁੵK( 1 √ 2 ) ▶ ࢉज़زԿฏۉͱପԁੵͷؔ ʢϥϯσϯมʣ
▶ ପԁੵͱԁपͷؔ ʢϧδϟϯυϧͷؔࣜʣ
ڏ๏ ପԁੵͷؔࣜ ∫ it 0 1 √ 1 − r4
dr = ∫ t 0 1 √ 1 − (ir′)4 d(ir′) = i ∫ t 0 1 √ 1 − r′4 dr′
ڏ๏ ପԁੵ s(t) = ∫ t 0 1 √ 1
− r4 dr ڏ๏ͱ͍͏ؔࣜΛຬͨ͢ s(it) = is(t)
ڏ๏ ପԁੵ K(k) = ∫ π/2 0 dθ √ 1
− k2 sin2 θ k ͝ͱʹ৭ʑଘࡏ͢ΔɻͦͷதͰϨϜχε έʔτੵK( 1 √ 2 )ಛผͳରশੑΛ࣋ͭɻ
Ξʔϕϧͱؔͷੵ
ϨϜχεέʔτੵ s(t) = ∫ t 0 1 √ 1 −
r4 dr ʹ͍ͭͯϑΝχϟʔϊΦΠϥʔͷݚڀ
ΦΠϥʔͷՃ๏ఆཧ x = y − √ 1 − z4 +
z √ 1 − y4 1 + y2z2 ͷͱ͖ ∫ x 0 1 √ 1 − r4 dr = ∫ y 0 1 √ 1 − r4 dr + ∫ z 0 1 √ 1 − r4 dr
ΞʔϕϧͷҰൠԽ ·ͣପԁੵ ∫ dx √ x3 + ax2 + bx
+ c Λߟ͑Δɻ
ΞʔϕϧͷҰൠԽ r = √ −x dr = − dx 2
√ −x ∫ dr √ 1 − r4 = − 1 2 ∫ dx √ (1 − x2)(−x)
ͦͷલʹ ԁͷހ ∫ dx √ 1 − x2 x =
sin t ͱஔੵ
ࡾ֯ؔͷՃ๏ఆཧ C : x2 + y2 = 1 L(t) :
y = t1 x + t2 P1 (t) P2 (t) O
Ξʔϕϧ C ͱL(t)ͷަP1 (t), P2 (t) ∫ dx y =
∫ dx √ 1 − x2 u(t) = ∫ P1(t) O dx y + ∫ P2(t) O dx y
t2 Λಈ͔͢ P1 (t) P2 (t) O ∂u(t) ∂t2 =
0
t1 Λಈ͔͢ P1 (t) P2 (t) O ∂u(t) ∂t1 =
−2(arctan t1 )′
͜ͷ͜ͱ͔Βɺ u(t) = −2 arctan t1 = arcsin( −2t1 1
+ t2 1 )
Ұํɺx1 , x2 ͕x2 + (t1 x + t2 )2
= 1ͷղͳͷͰ x1 x2 = t2 2 − 1 t2 1 + 1 , x1 + x2 = −2t1 t2 t2 1 + 1 Ͱ͋Δ͜ͱ͔Βɺ x1 y2 + x2 y1 = x1 (t1 x2 + t2 ) + x2 (t1 x1 + t2 ) = 2t1 x1 x2 + (x1 + x2 )t2 = −2t1 1 + t2 1
ͭ·Γɺ u(P1 (t)) + u(P2 (t)) = u(t) ∫ (x1,y1)
(0,1) dx y + ∫ (x2,y2) (0,1) dx y = ∫ x1y2+x2y1 (0,1) dx y ͱͳΔɻ
ٯؔ u(s) = ∫ s 0 dx y ͷٯؔ u
= ∫ s(u) 0 dx y ࠓͷ߹͜Ε͕ࡾ֯ؔ
Ճ๏ఆཧ u(t)ͷٯؔΛt = sin(u)ͱ͔͘ͱɺ sin(u(P1 ) + u(P2 )) =
x1 y2 + x2 y1 = cos u(P1 ) sin u(P2 ) + sin u(P2 ) cos u(P1 )
·ͱΊ 1. u = ∫ s 0 dx √ 1
− x2 ͷٯ͕ؔsin u 2. x2 + y2 = 1ͷΞʔϕϧ ∫ P1(t) O dx y + ∫ P2(t) O dx y 3. ࡾ֯ؔͷՃ๏ఆཧ
ପԁੵ y2 = x3 + ax2 + bx + c
∫ P O dx √ x3 + ax2 + bx + c = ∫ P O dx y
ΞʔϕϧͷՃ๏ఆཧ C ͱL(t)ͷަP1 (t), P2 (t), P3 (t) P1 (t)
P2 (t) P3 (t)
ΞʔϕϧͷՃ๏ఆཧ C ͱL(t)ͷަP1 (t), P2 (t), P3 (t) C ͷΞʔϕϧ
u(t) = ∫ P1(t) O dx y + ∫ P2(t) O dx y + ∫ P3(t) O dx y
ΞʔϕϧͷՃ๏ఆཧ C ͱL(t)ͷަP1 (t), P2 (t), P3 (t) Ξʔϕϧͷఆཧ u(t)
= ∫ P1(t) O dx y + ∫ P2(t) O dx y + ∫ P3(t) O dx y = 0
ପԁؔͷՃ๏ఆཧ ପԁੵͷٯؔ u = ∫ s(u) O dx y ΛΈͨ͢s(u)͕ପԁؔ
ପԁؔͷՃ๏ఆཧ P3 ͷ࠲ඪy = t1 x + t2 ͱ y2
= x3 + ax2 + bx + c ͔Βతʹٻ·Δ P1 P2 P3
ପԁؔͷՃ๏ఆཧ ∫ P1 O dx y + ∫ P2 O
dx y + ∫ P3 O dx y = 0 u1 + u2 + u3 = 0 s(u1 + u2 ) = s(−u3 ) = P1 ͱP2 ͷతͳࣜ
·ͱΊ 1. u = ∫ s 0 dx √ x3
+ ax2 + bx + c ͷٯ͕ؔ ପԁؔ 2. y2 = x3 + ax2 + bx + c ͷΞʔϕϧ ∫ P1(t) O dx y + ∫ P2(t) O dx y + ∫ P3(t) O dx y = 0 3. ପԁؔͷՃ๏ఆཧ
Ξʔϕϧੵ P1 (t), . . . , Pn (t)ΛC ͱDt
ͷަͱ͢Δ u(t) = n ∑ i=0 ∫ Pi(t) P0 r(x, y)dx ͜͜Ͱr(x, y)dx dx y ͷΑ͏ͳ༗ཧࣜ
Ξʔϕϧͷఆཧ u(t) = n ∑ i=0 ∫ Pi(t) P0 r(x,
y)dx u(t) = R(t) + ∑ logi Si (t) ͜͜ͰɺR(t), S(t)t ͷ༗ཧؔ
Ξʔϕϧͷఆཧ ω = pdx fy ∂u(t) ∂t1 = −x2p(x, t1
x + t2 ) f (x, t1 x + t2 ) ͷఆ߲ ∂u(t) ∂t2 = −xp(x, t1 x + t2 ) f (x, t1 x + t2 ) ͷఆ߲
Ξʔϕϧͷఆཧ p ͷ͕࣍খ͚͞Εu(t)ఆ ∫ P1 P0 ω + ∫ P2
P0 ω + · · · ∫ Pn P0 ω = 0
Ξʔϕϧͷఆཧͱपظ
Ξʔϕϧͷఆཧͷٯ Ξʔϕϧͷఆཧ P1 , P2 , P3 ͕Ұઢ্ͷͱ͖ u(P1 )
+ u(P2 ) + u(P3 ) = 0 Ξʔϕϧͷఆཧͷٯ C ্ͷP1 , P2 , P3 ʹର͠ u(P1 ) + u(P2 ) + u(P3 ) = 0ͳΒP1 , P2 , P3 Ұ ઢ্ɻ
Ξʔϕϧͷఆཧͷٯ C ͕n࣍ۂઢf (x, y) = 0ͷͱ͖ P1 , .
. . , Pg ͱQ1 , . . . , Qg ͔Β ∑ i u(Pi ) + ∑ i u(Qi ) + ∑ i u(Ri ) = 0 ΛΈͨ͢R1 , . . . , Rg ͕ܾ·Δɻ
पظ ੵͷ࣮Ұͭʹܾ·Βͣɺੵܦ࿏ʹ ґଘ͢Δɻ P Q O
पظ ίʔγʔͷੵఆཧ ಛҟΛճΒͳ͚ΕੵͷมΘΒͳ͍ पظ ಛҟͷपΓΛҰपճͬͨੵͨͪ ∫ γ ω
ϗϞϩδʔɺίϗϞϩδʔ ຊ࣭తʹҟͳΔܦ࿏͕ͲΕ͙Β͍͋Δ͔ʁ γ ∈ H1 (C, Z) पظ֨ࢠ Λ(C) =
{( ∫ γ ωi ) | γ ∈ H1 (C, Z)} ⊂ C
ΞʔϕϧϠίϏͷఆཧ C ͕ࡾ࣍ࣜͷ࣌ C → C/Λ(C) ಉҰࢹΛ༩͑Δɻ
ϗοδཧ ඃੵؔω ͱੵܦ࿏γ ͷؔ ∫ γ ω ͕ۂઢf (x, y)
= 0ʹґଘͨ͠ྔΛ༩͑Δɻ
ϞδϡϥΠ ▶ ପԁؔͰҟͳΔͷ͕ͲΕ͙Β͍͋ Δ͔ʁ ▶ पظ͕ͲΕ͙Β͍͋Δ͔ʁ ͜ΕΒΛूΊͯҰͭͷزԿֶతରͱͯ͠ ѻͬͨͷ͕ϞδϡϥΠۭؒ
ࢀߟจݙ ▶ פޫɺશପԁੵͱΨεɾϧδϟ ϯυϧ๏ʹΑΔπ ͷܭࢉ ▶ Phillip Griffiths, The legacy
of Abel in algebraic geometry ▶ Phillip Griffiths, Variations on a Theorem of Abel