Upgrade to Pro — share decks privately, control downloads, hide ads and more …

導来代数幾何入門

Avatar for Naoya Umezaki Naoya Umezaki
March 29, 2019

 導来代数幾何入門

第三回関東すうがく徒のつどいでの発表スライドです。

Avatar for Naoya Umezaki

Naoya Umezaki

March 29, 2019
Tweet

More Decks by Naoya Umezaki

Other Decks in Science

Transcript

  1. ࠓ೔ͷ಺༰ ୅਺زԿʹ͓͚Δۭؒʹରͯ͠ɺద੾ͳۃݶ΍༨ۃݶͷૢ࡞Λ༩ ͑Δ࿮૊Έ͕ཉ͍͠ɻ௨ৗͷεΩʔϜ͸ Algk → Set ͱ͍͏ؔख Ͱద੾ͳ৚݅Λຬͨ͢΋ͷͰ͋Δɻ͜ΕΛ֦ுͯ͠ɺಋདྷεΩʔ ϜΛؔख dAlgk

    → sSet Ͱ͋ͬͯద੾ͳ৚݅Λ࣋ͭ΋ͷͱͯ͠ఆ ΊΔɻ ͜ΕΒ͸ϗϞτϐʔΛऔΓೖΕͨߏ଄Λ࣋ͭݍͰ͋ΓɺϗϞτ ϐʔΛߟྀͨ͠ద੾ͳۃݶૢ࡞Λఆٛ͢Δ͜ͱ͕Ͱ͖Δɻ Ԡ༻্ͷಈػͱͯ͠ɺྫ͑͹ up to equivalence Ͱ෺ࣄΛ෼ྨ͢Δ Α͏ͳ໰୊Λߟ͍͑ͨɻྫ͑͹ಋདྷݍͷର৅Ͱద੾ͳ৚݅Λ࣋ͭ ΋ͷΛ෼ྨ͢Δɻ 4
  2. homotopy limit and homotopy colimit ௨ৗͷۃݶ΍༨ۃݶ͸ϗϞτϐʔͱ૬ੑ͕ѱ͍ɻ ∗ ← − −

    − − ∗ ⏐ ⏐ ⏐ ⏐ ∗ ← − − − − ∗ ⨿ ∗ S1 ← − − − − [0, 1] ⏐ ⏐ ⏐ ⏐ [0, 1] ← − − − − ∗ ⨿ ∗ ∗ − − − − → ∗ ⏐ ⏐ ⏐ ⏐ ∗ − − − − → S1 Z − − − − → ∗ ⏐ ⏐ ⏐ ⏐ R − − − − → S1 ͜ΕΛࠀ෰͢ΔͨΊʹϗϞτϐʔۃݶͱϗϞτϐʔ༨ۃݶͱ͍͏ ֓೦Λఆٛ͢Δɻ 7
  3. ୅਺زԿʹ͓͚ΔϑΝΠόʔੵ k ΛՄ׵؀ͱ͠ Algk ΛՄ׵ͳ k ୅਺ͷݍͱ͢Δɻ k ୅਺ A

    ʹରۭͯؒ͠ SpecA → Speck Λߏ੒͢Δɻ͜Ε͸ B → Homk(A, B) ʹΑΓؔख Algk → Sets Λ༩͑Δɻ͜ΕͷషΓ ߹Θ͕ͤҰൠͷεΩʔϜ X Ͱ͋Δɻ͜Ε͸૬ରతͳٞ࿦ X → S Λѻ͏ͨΊͷ࿮૊ΈΛ༩͑Δɻ Xp − − − − → X ⏐ ⏐ ⏐ ⏐ SpecFp − − − − → SpecZ X0 − − − − → X ⏐ ⏐ ⏐ ⏐ Speck − − − − → Speck[t]/t2 εΩʔϜͷϑΝΠόʔੵʹରԠ͢Δૢ࡞͕୅਺ͷςϯιϧੵɻ Spec(A1 ⊗B A2) ≃ SpecA1 ×SpecB SpecA2 8
  4. ަ఺ཧ࿦ Ճ܈ͷෳମͷϗϞτϐʔͱͦͷۃݶɺ༨ۃݶ΋ಉ༷ͷ໰୊ɻ k ⊗k[x] k ≃ k ͕ͩ k ⊗k[x]

    (k[x][−1] ⊕ k[x]) ≃ k[−1] ⊕ k ͱͳΔɻ 0 − − − − → k[x] 1→x − − − − → k[x] − − − − → 0 ⏐ ⏐ ⏐ ⏐ 0 − − − − → 0 − − − − → k − − − − → 0 Tor1 k[x] (k, k) = k Ͱ͋Γɺk ⊗L k[x] k ≃ k[ϵ−1] = k ⊕ k[−1] ͱ up to homotopy Ͱఆ·Δɻ SpecB ⊗A C − − − − → SpecB ⏐ ⏐ ⏐ ⏐ SpecC − − − − → SpecA Ͱ͸ͳ͘ɺ௚઀ SpecA ⊗L B C ΛزԿతͳର৅ͱ͍ͨ͠ɻͨͩ͠ A ⊗L B C ͸ up to homotopy Ͱ͔ܾ͠·Βͳ͍͜ͱʹ஫ҙɻ 9
  5. มܗཧ࿦ A ͷඍ෼Ճ܈͸ Ω1 A/k = I/I1, I = ker(A

    ⊗k A → A) Ͱ͋ΓɺX ͷ ઀ۭؒ͸ Homk(Speck[t]/t2, X) Ͱ͋ͬͨɻϗϞτϐʔۃݶΛ༻͍ ͯɺX ʹର͠ɺ LX − − − − → X ⏐ ⏐ ∆ ⏐ ⏐ X ∆ − − − − → X ⊗ X ͱఆٛ͢Δͱ LX = SpecSymOX (LX [1]) ͱͳΔɻ ͜ͷ LX ͸ cotangent complex ͱݺ͹ΕΔ΋ͷͰɺX ͷมܗΛίϯ τϩʔϧ͢Δෳମɻ A ͕ smooth k-algebra ͳΒ LA ≃ Ω1 A/k Ͱ͋Γɺπ0(LA) = Ω1 π0A ͱ ͳΔɻ 10
  6. stack εΩʔϜ X ͸ू߹ʹ஋Λ࣋ͭ૚ Algk → Set ΛఆΊΔɻྫ͑͹ A ʹର͠Մٯݩશମͷू߹

    A× ΛରԠͤ͞Δ΋ͷ͸ Gm = Speck[x, x−1] Ͱදݱ͞ΕΔɻ ͜ͷͱ͖૚ F ͷషΓ߹Θͤ৚݅͸ɺS ͷඃ෴ U• → S ʹରͯ࣍͠ ͕׬શͰ͋Δ͜ͱɻ F(S) F(U) F(U ×S U) ྫ͑͹ G-torsor શମΛ෼ྨ͢Δۭؒ BG Λߟ͑Δɻͭ·Γؔख BG(S) = {S্ͷG-torsor શମ } Λߟ͑ΔɻಉܕྨΛద੾ʹॲཧ͢ ΔͨΊʹɺSet Ͱ͸ͳ͘ Grpdʢશͯͷࣹ͕ಉܕͰ͋Δݍͷͳ͢ݍʣ ʹ஋Λ࣋ͭ૚Λߟ͑Δɻ͜ͷΑ͏ͳ΋ͷΛ stack ͱ͍͏ɻ stack F ͷషΓ߹Θͤ৚݅͸ίαΠΫϧ৚݅Λߟ͑ͯ F(S) F(U) F(U ×S U) F(U ×S U ×S U) Set ͸ Grpd ʹ཭ࢄతͳ΋ͷͱͯ͠ຒΊࠐΊΔɻ 11
  7. higher stack Grpd ͷ nerve ΛͱΔ͜ͱͰ sSetʢ୯ମతू߹ͷͳ͢ݍʣ͕ఆ· Δɻ୯ମతू߹͸ɺ͓͓Αͦ఺΍ઢ෼ɺࡾ֯ܗɺ࢛໘ମͳͲΛద ੾ʹషΓ߹Θͤͨ΋ͷͱͯ͠Πϝʔδ͓ͯ͘͠ɻ ͜Εʹ޿͛Δ͜ͱͰΑΓ޿͍

    moduli ໰୊Λߟ͑Δ͜ͱ͕Ͱ͖Δɻ ಛʹ up to euivalence Ͱ෼ྨ͍ͨ͠৔߹͕͋Δɻྫ͑͹ S ্ͷద ੾ͳ৚݅Λຬͨ͢૚ͷෳମΛ෼ྨ͍ͨ͠৔߹ͳͲɻ ͜ͷΑ͏ͳ໰୊Λߟ͑ΔͨΊʹ higher stack Λ sSet ʹ஋Λ࣋ͭ૚ ͱͯ͠ఆΊΔɻషΓ߹Θͤ৚݅͸ߴ࣍ͷίαΠΫϧ৚݅Λߟ͑ͳ ͚Ε͹͍͚ͳ͍ɻ F(S) F(U) F(U ×S U) F(U ×S U ×S U) · · 12
  8. ϧʔϓۭؒ ۭؒ X ʹରͯ͠ S1 ͔Β X ΁ͷ࿈ଓࣸ૾શମΛద੾ʹҐ૬ۭؒͱ ࢥͬͨ΋ͷ͕ϧʔϓۭؒ LX

    Ͱ͋Δɻ ϗϞτϐʔ࿦ʹ͓͚Δϧʔϓۭؒ Map(S1, X) = Map(BZ, X) S1 ≃ BZ ≃ ∗ ⨿h ∗⨿h∗ ∗ ͱͰ͖Δɻ ୅਺زԿʹ͓͍ͯϧʔϓۭؒΛ࡞ΔɻBZ ͸ελοΫͱͯ͠͸ఆ ٛͰ͖Δ͕ mapping stack ͸ࣗ໌ͳ΋ͷʹͳͬͯ͠·͏ɻ derived mapping stack Λߟ͑Δɻͭ·Γ T → Map(T × M, X) Ͱ ͸ͳ͘ T → Map(T ×h M, X) Λߟ͑Δɻ ϧʔϓۭؒ͸ X ×h X×X X ͱͯ͠ఆΊΔ͜ͱ͕Ͱ͖Δɻ 13
  9. ϧʔϓۭؒͱ Chern ࢦඪ LBG = Map(S1, BG) = G/G ͱͳΔɻ͜Ε͸

    S1 ্ͷ G-torsor Λ ߟ͑ΔͱɺషΓ߹Θ͕ͤ e ΛͲ͜ʹ͸Γ߹ΘͤΔ͔Ͱܾ·Δ͜ͱɺ G-torsor ͷಉܕ͕ G ಉมͰ͋Δ͜ͱͱ torsor ͷ࡞༻Λߟ͑Δͱɺ ಉܕΛ༩͑Δͷ͕ e → h ͱͨ͠ͱ͖ɺhg′ = gh ͱͳΔɻ V /X ͱ γ : S1 → X ʹର͠ɺ γ∗V − − − − → V ⏐ ⏐ ⏐ ⏐ S1 γ − − − − → X ͷϞϊυϩϛʔͷ trace ΛରԠͤ͞Δ͜ͱͰɺCh(V ) ∈ O(LX)S1 ͕ఆ·Δɻ͜Ε͕ Ch : K(X) → O(LX)S1 = Hev DR (X) Λ༩͑Δɻ ಛʹ X = BG ͱ͢ΔͱɺLX = LBG = [G/G] Ͱ͋ΓɺV ͸ G ͷද ݱɺO(LX)S1 = C(G/G) ͸ྨؔ਺ͰɺCh ͸දݱͷ trace Ͱ͋Δɻ 14
  10. ͜ͷઅͷ໨ඪ Algk Sets Grpd dAlgk sSets Sch St hSt dSt

    ӈଆΛ sset ʹ͢Δͱ moduli problem ΛΑΓ޿͍΋ͷΛѻ͏͜ͱ͕ Ͱ͖Δɻྫ͑͹ಋདྷݍͷର৅Λ෼ྨ͢ΔɺಋདྷݍΛ෼ྨ͢ΔͳͲ up to equiv Ͱ෼ྨ͍ͨ͠৔߹ͳͲʹඞཁɻ ࠨଆΛ derive ͢Δͱʮਖ਼͘͠ʯۃݶΛͱΔ͜ͱ͕Ͱ͖ɺ ʮਖ਼͍͠ʯ ۭؒΛఆٛͰ͖Δɻ ྆ଆʹϗϞτϐʔ͕ఆ·͍ͬͯͯɺͦΕʹ͍ͭͯ੔߹తͳؔखɻ 17
  11. derived topology (higher) stack ͸ Algk → sSet Ͱ૚ʹͳΔ΋ͷͩͬͨɻ͜ΕΛ֦ு ͯ͠

    dAlgk → sSet Ͱ૚ʹͳΔ΋ͷͱͯ͠ derived stack Λఆٛ ͢Δɻ dAlgk ͸ྫ͑͹Մ׵ dg k ୅਺ͷݍɻdg ୅਺ͱ͸ ⊕i Ai Ͱ࣍਺ −1 ͷࣹ d Ͱ͋ͬͯ d2 = 0 ͳΔ΋ͷɻ ૚Λఆٛ͢ΔͨΊʹ͸Ґ૬͕ඞཁɻ ఆٛ dAlgop k ʹ derived ´ etale topology ΛҎԼͰఆΊΔɻ{A → Bi }i ͕ ´ etale covering ͱ͸ɺ{π0(A) → π0(B)} ͕௨ৗͷՄ׵؀ͱͯ͠ ´ etale covering Ͱ͋ΓɺπnA ⊗π0A π0Bi → πnBi ͕ಉܕɻ ͜Ε͸ infinitesimal lifting Ͱಛ௃෇͚Δ͜ͱ΋Ͱ͖Δɻ 18
  12. derived stack ૚͸લ૚Ͱ͋ͬͯɺషΓ߹Θͤ৚݅Λຬͨ͢΋ͷɻ ఆٛ derived stack ͱ͸ؔख F : dAlgk

    → sSet Ͱ͋ͬͯɺweak equivalence Λอͪɺ࣍ͷ descent ৚݅Λຬͨ͢ɻ ೚ҙͷ etale h-hypercovering B• → A ʹରͯ͠ F(A) → holimF(B•) ͕ Ho(sSet) ʹ͓͚Δಉ஋ F(A) holim(F(B) F(B ⊗L A B) · · · ) 19
  13. derived affine stack RSpec : dAlgk → dStk ͕ఆ·Γ஧࣮ॆຬɻ ʢderived

    Yonedaʣ͜Ε ͸ A → (B → Map(A, B)) ͰఆΊΔɻ RSpecB ×h RSpecA RSpecC ≃ RSpec(B ⊗L A B) Map(F, G) : H → Map(F ×h H, G) ͳͲͱͯ͠ɺinternal hom ΍ holim ͕ఆ·Δɻ Ұൠͷ derived stack ͸ affine derived stack ͷ colimit Ͱ͔͚Δɻ ఆٛҬΛ੍ݶ͢Δ͜ͱͰ t0 : dSt → St ͕ఆ·Γɺafiine ΛషΓ߹ ΘͤΔ͜ͱͰ i : St → dSt ͕ఆ·Δɻt0(RSpecA) = Specπ0(A) ͱͳΔɻ·ͨ it0X → X ͸ดຒΊࠐΈͰɺX ͱ t0(X) ͷ small etale site ͸Ұக͢Δɻ͔͠͠ i ͸ holim ΍ Map Λอͨͣɺderived tangent ΍ derived fibered product ͸ਅʹ derived ͳ৘ใΛؚΉɻ 20
  14. derived mapping stack MapdStk (F, G) : H → HomdStk

    (F ×h H, G) ͱఆΊΔɻ͜Ε͕ dStk ʹ͓͚Δ internal hom Ͱ͋Δɻ Σ ͕Ґ૬ۭؒ΍୯ମతू߹ͷ࣌ɺinternal hom XΣ = Map(Σ, X) ͕ derived stack ͱͯ͠ఆ·Δɻ͜͜Ͱ Σ ͸ constant stackɻ ͜ͷͱ͖ i : Stk → dStk ͸ Map ͱަ׵͠ͳ͍ɺͭ·Γ iMap(F, G) ≃ RMap(iF, iG) ͱͳΔͱ͸ݶΒͳ͍ɻ ҰํͰ t0 : dStk → Stk ͱ͸ަ׵͢Δɻͭ·Γ t0 RMap(F, G) ≃ Map(t0F, T0G) ͱͳΔɻಛʹ F, G ͕ St(k) ͔Β དྷΔͱ͖ɺt0 RMap(iF, iG) ≃ Map(F, G) Ͱ͋Δɻ ʢt0iF ≃ F Ͱ͋ Δ͜ͱʹ஫ҙʣͭ·Γ derived mapping stack ͸ mapping stack Λ ଠΒͤͨ΋ͷɻ mapping space ͕ͣΕΔྫͱͯ͠ɺ࣍ͷ loop stack ͷྫΛݟΔɻ 21
  15. derived loop stack LX = XS1 = Map(S1, X) ͸

    internal hom ͰఆΊΔɻ LX ≃ X ×h X×X X Ͱ͋Δɻ X ͕Ґ૬ۭ͔ؒΒఆ·Δ constant stack ͷ৔߹ɺLX ͸௨ৗͷ loop space ͔Βఆ·Δ constant stack stack ͱͯ͠ͷ Map(BZ, X) ͸ X ͦͷ΋ͷʹͳΔ͕ɺderived stack ͱͯ͠ͷ Map(BZ, X) = X ×h X×hX X ͱͳΔɻ ∗ ×A1 ∗ ≃ k[ϵ−1] ͷܭࢉ X = BG ͷͱ͖ LX = LBG = G/G X ͕ smooth scheme over char 0 field ͷ࣌͸ TX [−1] 22
  16. cotangent complex scheme ͷ cotangent complex, Ω1 ͱͷؔ܎ɺมܗཧ࿦ derived ring

    Di = RSpeck[ϵ] = RSpec(k ⊕ k[i]) ͱ͢Δɻdegree 0 ͱ-i ʹ͋Δɻ ͜ͷͱ͖ Exti k (LX,x , k) ≃ RHom∗(Di , (X, x)) ͱͳΔɻExti ͸ derived stack ʹ͓͍ͯ͸දݱՄೳɻ derived tangent stack Λ TX = Map(Speck[ϵ], X) ͱ͢Δɻ Y ͕ scheme ͳΒ TiY ≃ RSpecY (SymOY LY ) ͱͳΔɻ Vectn(X) ͸ඇࣗ໌ͳ derived extension Λ࣋ͭɻRVectn(X) ͱ ͢Δɻ 23
  17. ͜ͷઅͷ·ͱΊ derived affine stack RSpecA ͱͦͷషΓ߹ΘͤͰ derived stack X ͕ಘΒΕΔɻ͜Ε͸ؔख

    X : dAlgk → sSet Ͱ͋ͬͯɺϗϞτϐʔ ΛอͪɺషΓ߹Θͤ৚݅Λຬͨ͢΋ͷɻ ͜ͷ࿮૊Έʹ͓͍ͯɺ 1. ϧʔϓۭؒ LX 2. cotangent complex LX 3. ަ఺ੵ X×h X ͕ਖ਼͘͠ఆٛͰ͖Δɻ 24
  18. ͜ͷઅͷ໨ඪ ·ͣ derived stack X ্ͷ૚ͷݍ QC(X) Λఆٛ͢Δɻ·ͨ͋Δछ ͷ༗ݶੑ৚݅Λຬͨ͢΋ͷͱͯ͠ perfect

    stack X Λఆٛ͢Δɻ ͜ͷԼͰੵ෼ม׵ͷݍ͕४࿈઀૚ͷݍͱಉ஋ʹͳΔ͜ͱΛΈΔɻ X → Y , X′ → Y ʹରͯ͠ QC(X ×Y X′) ≃ FunY (QC(X), QC(X′)) K → (F → (f∗(g∗F ⊗ K))) ੵ෼ม׵͸ X × Y ্ͷ֩ؔ਺ K(x, y) Λ༻͍ͯ Y ্ͷؔ਺ f (y) ͔Β x ্ͷؔ਺ΛఆΊΔɻ K(x, y) → (f (y) → (x → Y f (y)k(x, y)dy)) 26
  19. QC(X) ͷఆٛ ҰൠʹΞʔϕϧݍ A ͔Βͦͷෳମͷͳ͢ dg ݍ Ch(A) Λ࡞Γɺ͞ Βʹ͔ͦ͜Β

    ∞ ݍ Ndg (Ch(A)) ΛఆΊΔ͜ͱ͕Ͱ͖Δɻ͜ΕΛ ModA ͱ͢ΔɻX = SpecA ͕ affine derived scheme ͷ࣌ɺ QC(X) = ModA ͱ͢Δɻ Ұൠͷ derived stack ʹ͍ͭͯ͸ɺX Λ affine derived stack ͷ colimit Ͱॻ͖ɺಉ͡ਤࣜͰ QC ͷ limit Λ ∞-cat of ∞-cats Ͱ ͱΔɻ X ͕ qc Ͱ affine diagonal ∆ : X → X × X Λ࣋ͯ͹ɺcosimplical diagram ͷ totalization Ͱ͔͚Δɻ 27
  20. perfect stack ఆٛ 1. A Λ derived commutative ring ͱ͢ΔɻA

    Ճ܈ M ͕ perfect ͱ ͸ɺModA ͷ smallest ∞ category Ͱ finite colimit ͱ retract Ͱ ͱͨ͡΋ͷʹଐ͢Δ͜ͱɻ 2. derived stack X ʹର͠ɺPerf (X) ͸ QC(X) ͷ full ∞-subcategory Ͱ͋ͬͯɺ೚ҙͷ affine f : U → X ΁ͷ੍ݶ f ∗M ͕ perfect module Ͱ͋Δ΋ͷ͔ΒͳΔ΋ͷɻ 3. derived stack X ͕ prefect stack ͱ͸ QC(X) ∼ = IndPerf (X) Ͱ ͋Δ͜ͱɻ 4. f : X → Y ͕ perfect ͱ͸ɺ೚ҙͷ affine U → Y ʹ͍ͭͯɺ X ×Y U ͕ perfect ͳ͜ͱɻ 28
  21. ༗ݶੑ৚݅ compact ͱ dualizable ͱ perfect ͷؔ܎ɻstable ∞-category C ͷ

    ର৅ M ʹ͍ͭͯ 1. compact ͱ͸ HomC (M, −) ͕ coproduct ͱަ׵͢Δ͜ͱɻ 2. dualizabule ͱ͸͋Δ M∨ ͱ u : 1 → M ⊗M∨, τ : M ⊗M∨ → 1 ͕ଘࡏͯ͠ɺM → M ⊗ M∨ ⊗ M → M ͕ idM ͱͳΔ΋ͷɻ Vect/k ʹ͓͚Δ༗ݶ࣍ݩϕΫτϧۭؒɻV ∨ = Hom(V , k) ͱ͢ Δɻ1 → V ⊗ V ∨ Λର֯ߦྻɺV ⊗ V ∨ → 1 Λ trace ͱ͢Δͱɺ্ ͷ৚݅Λຬͨ͢ɻ ಛʹ X ͕ affine diagonal Λ࣋ͪ perfect ͳͱ͖ɺQC(X) ʹ͓͍ͯ dualizable ͱ compact ͱ perfect ͸ಉ஋ɻ 29
  22. base change ͱ projection formula ໋୊ (BFN, proposition 3.10) f

    : X → Y Λ perfect ͱ͢Δɻ͜ͷ࣌ 1. f∗ : QC(X) → QC(Y ) ͸ small colimit ͱަ׵͠ɺprojection formula Λຬͨ͢ 2. ೚ҙͷ derived stack ͷࣹ g : Y ′ → Y ʹର͠ɺbase chage map g∗f∗ → f ′ ∗ g′∗ ͸ಉ஋ X′ g′ − − − − → X f ′ ⏐ ⏐ f ⏐ ⏐ Y ′ g − − − − → Y QC(X′) g′∗ ← − − − − QC(X) f ′ ∗ ⏐ ⏐ f∗ ⏐ ⏐ QC(Y ′) g∗ ← − − − − QC(Y ) 30
  23. ⊗ ͱ × ໋୊ (BFN, Proposition 4.6) X1, X2 perfect,

    : QC(X1)c ⊗ QC(X2)c ∼ = QC(X1 × X2)c 1. ⊗ ͱ pullback ͸ dualizable ΛอͪɺX = X1 × X2 ͕ perfect ͳ ͜ͱ͔Βɺ֎෦ੵ͕ compact Λอͭ 2. QC(X1 × X2)c ͕֎෦ੵͰੜ੒ 3. projection formula ʹΑΓূ໌ɻ͞Βʹ 1. Ind : st → PrL ͕ summetric monoidal 2. IndQC(X)c ≃ QC(X) ͔Βɺ : QC(X1) ⊗ QC(X2) ≃ QC(X1 × X2) ͕੒ཱɻ 31
  24. ⊗ ͱ × ఆཧ (BFN ͷ Theorem 4.7) X1, X2,

    Y ͕ perfect ͷ࣌ɺ QC(X1 ×Y X2) = QC(X1) ⊗QC(Y ) QC(X2) Y ͕Ұൠͷ࣌ͷূ໌ͷํ਑ʢͲ͜ʹ Y ͕ perfect Λ࢖͏ʁʣ X1 ×Y X2 → X1 × Y • × X2 ͔Β QC(X1 ×Y X2) ← QC(X1 × Y •X2) Λ࡞Δɻ͢Ͱʹূ໌ͨ͜͠ͱ ͔Β QC(X1) ⊗ QC(Y )• ⊗ QC(X2) ͱͳΓɺ͜Εͷ geometric realization Ͱ QC(X1) ⊗QC(Y ) QC(X2) ͕ܭࢉͰ͖Δɻ 1. QC(X1 ×Y X2) = ModTgeom (QC(X1 × X2)) by Barr-Beck 2. QC(X1) ⊗QC(Y ) QC(X2) = ModTalg (QC(X1 × X2)) by Barr-Beck 3. Talg = Tgeom by base change 32
  25. self-duality ܥ (BFN, Corollary 4.8) π : X → Y

    map of perfect stacks ͱ͢ΔɻQC(X) ͸ self dual QC(Y )-mod Ͱ͋Δɻͭ·Γ FunQC(Y ) (QC(X), QC(X′)) ≃ QC(X) ⊗QC(Y ) QC(X′) ͱͳΔɻ 33
  26. ੵ෼ม׵ ఆཧ (BFN ͷ Theorem 4.14) X, Y dst with

    affine diagonalɺf : X → Y Λ perfectɺg : X′ → Y ͸೚ҙɻ͜ͷ࣌ QC(X ×Y X′) ≃ FunY (QC(X), QC(X′)) ͸ಉ஋ɻ 1. ؔखͷߏ੒ M → ˜ f∗(M ⊗ ˜ g∗−) ͱ͢Δɻ˜ f ͕ perfect ͳͷͰ colimit Λอͪ QC ʹҠΔɻ·ͨ projection formula ʹΑΓ QC(Y ) ઢܗʹͳΔɻ 2. X′ ʹ͍ͭͯ local ͳͷͰʢ×, lim, colim, QC ͷަ׵ؔ܎ʣ ɺ affine ʹؼண͢Δɻ QC(X ×Y SpecA) ≃ FunY (QC(X), ModA) Λࣔ͢ɻ 3. Y = SpecB ͷ࣌ɻલͷܥ 4.8 ͔Β QC(X) ͸ ModB ্ self dual Ͱɺલͷ໋୊ 4.13 ͔Β QC ͱ ⊗ ͷަ׵͕Θ͔ΔͷͰ FunB(QC(X), ModA) ≃ FunB(ModB, QC(X)∨ ⊗B ModA) ≃ QC(X) ⊗B ModA QC(X ×B SpecA) ≃ QC(X) ⊗B ModA ͱ ܭࢉͰ͖Δɻ 4. Y ͕Ұൠͷ࣌ɻ 34
  27. ͜ͷઅͷ·ͱΊ 1. derived affine scheme X = RSpecA ʹର͠ QC(X)

    = ModA Λ ∞ ݍͱͯ͠ఆٛͨ͠ɻ 2. Ұൠͷ derived scheme X ʹର͠ QC(X) Λ X = colimi RSpecAi ͷͱ͖ ModAi ͷషΓ߹ΘͤͰఆٛͨ͠ɻ ͜Ε͸Ճ܈Ͱ͋Δɻ ʢstable symmetric monoidal categoryʣ 3. perfect ͱ͍͏ΫϥεΛఆٛͨ͠ɻ༗ݶੑͷ৚݅ 4. ੵ෼ม׵ͷͳ͢ݍ͕ϑΝΠόʔੵͷ QC ͱಉ஋Ͱ͋Δ͜ͱΛ ࣔͨ͠ɻX ͕ Y ্ perfect ͳͱ͖ QC(X ×Y X′) ≃ FunY (QC(X), QC(X′)) K → (F → (f∗(g∗F ⊗ K))) 35
  28. affine Hecke category G ͸؆໿܈ɻHaff G Λ StG = ˜

    G ×G ˜ G ্ͷ G ಉม४࿈઀૚ͷͳ͢ ∞-category ͱ͢Δɻ͜͜Ͱ ˜ G → G ͸ Grothendieck-Springer resolution Ͱ ˜ G = {(g, B), g ∈ B, B ͸ Borel} ͱ͢Δɻ StG = ˜ G ×G ˜ G ͱ͢ΔɻZ(QC(X ×Y X)) ≃ QC(LY ) Λ X = ˜ G/G → Y = G/G = LBG ʹద༻͢Δ͜ͱͰ Z(Haff G ) = Z(QC(StG )) ≃ Z(QC(X ×Y X)) ≃ QC(LY ) ≃ QC(LLBG) ≃ QC(LocG (T2)) ͱͳΔɻ 38
  29. finite Hecke algebra X → Y ʹରͯ͠ D(X ×Y X)

    Λߟ͑Δɻಛʹ BB → BG ʹରͯ͠ X ×Y X = B\G/B ͱͳΔɻ Hecke category ͸ Hecke algebra ͷ categorification ·ͨ Loop space ͱͯ͠ͷղऍ͔Β D(B\G/B) ≃ Coh[(B×B)/G] (Stu/G)S1 loc ͱͯ͠ affine Hecke catgoory ͱ finite Hecke category Λ݁ͼ͚ͭΔ͜ͱ͕Ͱ͖Δɻ coherent D-module ͷݍ D(B\G/B) ͷ Drinfeld center ͱ G ্ͷࢦ ඪ૚ͷݍͷಉҰࢹɻ͞Βʹࢦඪ૚ͷ Langlands ૒ର͕͋Δɻ 39
  30. TFT extended TFT ͱ͸ (∞, 2)-cat ͷؒͷ symmetric monoidal functor

    Z : 2Cob → 2Alg ͷ͜ͱɻ2Cob ͸఺Λ 0 ର৅ɺ఺ͷؒͷ 1 ࣍ݩ bordism ͕ 1 ର৅ɺ1 ࣍ݩ bordism ͷؒͷ 2 ࣍ݩ bordism ͕ 2 ର৅ɻ 2Alg ͸୅਺͕ 0 ର৅ɺbimodule ͕ 1 ର৅ɺͦͷؒͷࣹ͕ 2 ର৅ɻ ໋୊ perfect stack X ʹର͠ extended 2d TFT ∃ZX ͕ ZX (S1) = QC(LX), ZX (Σ) = Γ(XΣ, OXΣ ) ͱͯ͠ఆ·Δɻ ZX ((S1)⨿m) = QC((LX)×m) ≃ QC(LX)⊗m = ZX (S1)⊗m ͱͳΓɺsymmetric monoidal ʹͳΔɻ ಛʹ X = BG ͷ৔߹͕਺ཧ෺ཧతʹ΋ڵຯΛ࣋ͨΕΔɻ 40
  31. ࢀߟจݙ • D. Ben-Zvi, J. Francis and D. Nadler, Integral

    transforms and Drinfeld centers in derived algebraic geometry. • D. Ben-Zvi and D. Nadler, Loop Spaces and Connections. • D. Ben-Zvi and D. Nadler, The character theory of a complex group. • D. Ben-Zvi and D. Nadler, Loop Spaces and Langlands Parameters. • D. Ben-Zvi and D. Nadler, Loop Spaces and Representations. • B. To¨ en, Higher and Derived Stacks: a global overview. • B. To¨ en and G. Vezzosi, A note on Chern character, loop spaces and derived algebraic geometry. • D. Gaitsgory and N. Rozenblyum, A study in derived algebraic geometry • J. Lurier, Higher Algebra. 41