• モデル • Word-base CNN (すべてのデータセットで実験) • Bi-directional LSTM (IMDB), Char-based CNN (AG’s News), LSTM (Yahoo! Answers) • 攻撃⼿法の⽐較 • Random, Gradient, Traversing in word order (TiWO), Word Saliency (WS) w⇤ i = R(wi, L i) = arg max w0 i 2L i {P(ytrue |x) P(ytrue |x0 i )} <latexit sha1_base64="14CIWqEs/eAQmgjHzZZYvYhGg6w=">AAAEKHicnVLLbtNAFL2uoZTwaAobJDYWUVBShWjSqlAhIVWCBQseaUraSnWxbDNxR/VL40maMPUP8AMs2AASC+Az2LBkg1C27BDLIrFhwfUDSogaJMayfefcc87cOzNW6LJIEDJUptRjx6dPzJwsnDp95uxsce7cehR0uU3bduAGfNMyI+oyn7YFEy7dDDk1PculG9buzSS/0aM8YoH/QAxCuu2Zjs86zDYFQkbx+Z4hWfxQzsfaDa1V2TNYTdM9U+xYlrwTG6yKsG5yxzP7hsy5esiZR2NNZ/6fXMwhJrVmZWBIXdC+kIJ3KYL7Oa0j+3FVuzLO2D/MjyxR1WOjWCJ1kg5tPGjkQQny0QzmlGXQ4REEYEMXPKDgg8DYBRMifLagAQRCxLZBIsYxYmmeQgwF1HaRRZFhIrqLXwdnWznq4zzxjFK1jau4+HJUalAmH8lrckDek7fkC/lxpJdMPZJaBvi3Mi0NjdknF9a+/1Pl4V/AzqFqYs0COrCc1sqw9jBFki7sTN97/PRg7XqrLC+Tl+Qr1v+CDMk77MDvfbNfrdLWM3QvI/Oomn5Vk+ynB/0JOyixUy/NT/IT6NHBHU3OLMrdbmEmOz+O0d18xfuopYgks+QE5lGtpxwH10m6jfPzdRCv/cb+19FMuxt1zLAC3tHG3zdyPFhfqDcW6wurpLRyL7+tM3ARLkEFb+Q1WIHb0IQ22Mq0UlOWlKvqG/WD+kkdZtQpJdech5Ghfv4JAmgAyA==</latexit> S(x, wi) = P(ytrue |x) P(ytrue | ˆ xi) <latexit sha1_base64="F1DEKh/fEAa9P5CscDvUqUV50Os=">AAAD5nicnVLNbtNAEJ7U/LThp2m5VOJiEQUlqESbcmiFhFSpHLgAaUPaSnWxbLNJVvWf7E1IuvULcOCGeuACSBwQjwEHXoBDHwE4phIXDsyuDVGJGqSuZXv2m/m+ndkZO3RZzAk5yk1p585fuDg9k790+crV2cLc/GYcdCOHNp3ADaJt24qpy3za5Iy7dDuMqOXZLt2y99akf6tHo5gF/hM+COmuZ7V91mKOxREyC08bZcOzeMduiX6yqD83WUW/p9fLA1MYnPa54FGXJsnBKKii3x736we60bG4GIWZgiVJxSwUSZWopY8btcwoQrbqwVxuBQx4BgE40AUPKPjA0XbBghifHagBgRCxXRCIRWgx5aeQQB65XYyiGGEhuoffNu52MtTHvdSMFdvBU1x8I2TqUCJfyQcyJF/IR/KN/DpVSygNmcsA/3bKpaE5+2Kh8fO/LA//HDoj1sScObRgReXKMPdQIbIKJ+X39g+HjbsbJXGTvCM/MP+35Ih8wgr83rHzfp1uvEb1EkaeltOfbOR9etCfcIMCK/WUf5IeR40W3qjsWZyp3UdP2r8IrYfZiY+RSxGRO9mBW8g2VEwbz5HVJll/24gv/sXOqmip6k4qplgeZ7T270SOG5tL1dqd6tI6Ka4+yqZ1Gq7DDSjjRC7DKjyAOjQxr8/wHYZwrHW0l9or7TANncplnGtwYmlvfgN33eiu</latexit>