Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
バドミントンでの試合の組み立て方を定量化したい
Search
yhiss
June 30, 2019
Research
1
71
バドミントンでの試合の組み立て方を定量化したい
2019年6月30日にSports Analyst Meetup #3でLTした内容です。
yhiss
June 30, 2019
Tweet
Share
More Decks by yhiss
See All by yhiss
バドミントンで試合展開から結果を予測してみる
yhiss
0
1.8k
Other Decks in Research
See All in Research
MIRU2024チュートリアル「様々なセンサやモダリティを用いたシーン状態推定」
miso2024
3
2.1k
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
670
Human-Informed Machine Learning Models and Interactions
hiromu1996
1
380
第60回名古屋CV・PRMU勉強会:CVPR2024論文紹介(Vision Transformer)
waka_90b
1
200
大規模言語モデルのバイアス
yukinobaba
PRO
4
680
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
320
「並列化時代の乱数生成」
abap34
3
800
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
3
730
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
420
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
1
110
湯村研究室の紹介2024 / yumulab2024
yumulab
0
250
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
300
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
We Have a Design System, Now What?
morganepeng
50
7.2k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Producing Creativity
orderedlist
PRO
341
39k
Docker and Python
trallard
40
3.1k
Happy Clients
brianwarren
97
6.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Adopting Sorbet at Scale
ufuk
73
9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
654
59k
Done Done
chrislema
181
16k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
32
1.8k
Building an army of robots
kneath
302
42k
Transcript
バドミントンでの試合の 組み立て方を定量化したい Sports Analyst Meetup #3 2019/06/30
自己紹介 yhiss(@yhiss_) 事業会社でデータ分析 スポーツ歴 バドミントン(9年ぐらい) 野球(6年ぐらい)
本分析の目的 バドミントン(ダブルス)での試合の組み立て、展開の仕方を世 界トップレベルの試合から理解したい 自分がプレイする際に感覚で理解していた部分を定量化したい ※機械学習等の高度な分析はしていません(基礎集計メイン)
どんなスポーツ? 概要:1対1または2対2でシャトル(水鳥の羽)を打ち合う競技 ルール:1ラリー中打てるのは1回。地面に落ちたら点数がカウント。 サーブ:得点を取った方がサーブ権をもつ。上から打ったらだめ! 公式戦:2ゲーム先取の3ゲーム(21点先取)
バドミントン(ダブルス)の攻守 サーブレシーブ後は誰が打っても よく、常にポジションが変わる その中でも攻守のフォーメーショ ンがある オフェンス:前後 ディフェンス:左右
バドミントン(ダブルス)の攻守 サーブレシーブ後は誰が打っても よく、常にポジションが変わる その中でも攻守のフォーメーショ ンがある オフェンス:前後 ディフェンス:左右
分析するにあたって(定性的・経験的仮定) バドミントンでは、 スマッシュ等の強い ショットが中心。 しかし、一般に1発 であまり決まらない →攻めの状態を作リ 続ける必要がある そのためにどのよう に試合を作っていく
かを試合データから 分析・考察する
データ化した試合 2019年5月に開催されたスディルマンカップ(国別対抗戦) インドネシア対日本の男子ダブルス 世界ランク1位と2位の対戦(21-14,21-18) ※1試合分だけ試合を見ながら自力でデータ化
分析結果(サーブ関連1) 得点に直結したショット(全69点) サーブでの点数が極端に少ない(2点) ミスによる点数が一番多い(31点) →1発で決まらないため、攻めの状態 をより多く作る必要がある
分析結果(サーブ関連2) サーブへのリターン(全67回) クリア(上げる)ショットが少ない(4回) 攻める系統のショットが大部分(57回) →サーブを打つと守りの態勢になる ので、攻めに転換する必要がある
分析結果(ラリー関連) 攻守が入れ替わるショットを集計 (92回) ドライブ(低く強いショット)が多い (42回) クリア等の上げるタイプは少ない →押し込んだり、動かすショットが よく使われる →試合の場面を見てみる
まとめと今後分析したいこと まとめ バドミントン(ダブルス)で勝つ試合を組み立てるためには、攻め の状態を多く作らなければならない。 そのためには、サーブ後の状態からドライブ等で攻守を入れ替え る技術が必要となる 今後分析したいこと コースの打ち分け等、より詳細な所を見ていきたい
データが無い&作るコストが高い問題をなんとかする必要がある