Upgrade to Pro — share decks privately, control downloads, hide ads and more …

190821_jc38_saito

yutaka-saito
August 21, 2019

 190821_jc38_saito

yutaka-saito

August 21, 2019
Tweet

Other Decks in Science

Transcript

  1. 転移学習 ➢ ある問題 A を解くために学習されたモデルを別の問題 B へ適用する理論 ➢ 本当に解きたい問題 B

    の学習データを取得するのは難しいが、 類似した問題 A の学習データは豊富にあるという状況で有用 ➢ 生命科学には転移学習ぽい状況がよくある : vivo の実験は難しいから vitro でやろう 非モデル生物は扱いが難しいからモデル生物を使おう ラボからフィールドへ 培養器から生産プラントへ 企業「本当に重要な機密データは見せたくない」etc ➢ ものすごく応用範囲が広そうなのに バイオインフォでは転移学習の研究はあまり行われていない? (個人の感想)
  2. 問題設定 ➢ がんの発現プロファイルから抗がん剤の効果を予測したい ➢ 実際の腫瘍サンプルの学習データは患者への投薬実験が必要 がん細胞株の薬効データ (IC50) は豊富 ➢ 細胞株データで学習した予測器を腫瘍サンプルへ適用する

    転移学習のうち unsupervised domain adaptation というクラス : source と target の特徴次元数が同じでデータの分布は異なる source には label が付いているが target には付いていない 発現プロファイル IC50 Xs : ns samples p genes source : 細胞株 target : 腫瘍 発現プロファイル transfer Xt : nt samples p genes
  3. 提案手法 PRECISE ➢ 基本的なアイデア : 発現データを低次元空間へ写像 写像先の空間では source と target

    の分布を類似させる 写像先の空間で学習した予測器は source, target どちらにも使えそう source space (p-dim) target space (p-dim) domain invariant space (d-dim) 実際は p ~ 20000 で d=20 くらいに設定 D : KS statistic
  4. 提案手法 PRECISE ➢ 写像先の空間に source, target 空間の情報をうまく入れたい : source, target

    空間それぞれで PCA を行い 両方の PC から離れすぎない方向の写像を見つけるよう制約を付加 source space (p-dim) target space (p-dim) source, target の PC を d 次元で直行変換 (~ 回転) して 1 対 1 対応させる 制約条件 : 写像ベクトルは 1 対 1 対応させた 青 ↑ と 赤 ↑ の間から選ぶ i=1 i=2 [0, 1] の 0 は 青 ↑ 、1 は 赤 ↑
  5. 写像の効果 ➢ 写像先の各次元は生物学的に解釈可能な特徴量になった 第 1, 2 次元は既知の乳がんマーカー遺伝子 第 3 次元は

    cell cycle 第 9 次元は immune system etc source : 乳がん細胞株 (n=51) target : 乳がん腫瘍 (n=1222) 各遺伝子への負荷量を使った gene set enrichment analysis
  6. 感想 ➢ かなり ad hoc な手法なので、どの部分が効いているのか知りたい : PC の制約なしで写像を決めると精度は? 写像しないで元の空間をそのまま使うと?

    etc ➢ 既存の転移学習手法との比較はなかった : 論文を選んだときは深層学習を使っていると思っていたのだが… ➢ 生命科学において転移学習が重要なのは間違いないと思う : 色々な分野で学習済モデルの整備が進むと良いなあ