Upgrade to Pro — share decks privately, control downloads, hide ads and more …

UW: Mapping Matter in Strong Gravity

UW: Mapping Matter in Strong Gravity

Colloquium given for the University of Washington Department of Astronomy on May 14, 2020.

Title:
Mapping Matter in Strong Gravity: Spectral-Timing of Black Holes and Neutron Stars

Abstract:
One of the best laboratories to study strong-field gravity is the inner 100s of kilometers around black holes and neutron stars in binary systems with low-mass stars like our Sun. The X-ray light curves of these binary systems show variability on timescales from milliseconds to months — the shorter (sub-second) variability can appear as quasi-periodic oscillations (QPOs), which may be produced by general relativistic effects. My research looks at QPOs from black holes and neutron stars (as well as coherent X-ray pulsations from neutron stars) by fitting the phase-resolved energy spectra of these signals to constrain their physical origin and track their evolution in time. In this talk, I will introduce why black holes and neutron stars are interesting and discuss state-of-the-art “spectral-timing” analysis techniques for understanding more about them. I will also highlight open-source astronomy research software and the importance of mental wellbeing in academia.

Dr. Abbie Stevens

May 14, 2020
Tweet

More Decks by Dr. Abbie Stevens

Other Decks in Science

Transcript

  1. Mapping Matter in Strong
    Gravity: Spectral-Timing of
    Black Holes and Neutron Stars
    Dr. Abbie Stevens
    NSF Astronomy & Astrophysics Postdoctoral Fellow
    Michigan State University & University of Michigan
    [email protected]
    @abigailstev
    github.com/abigailstev
    Image: NASA/JPL-Caltech

    View Slide

  2. Outline
    A.L. Stevens • Michigan State U. & U. Michigan
    § Compact objects, low-mass X-ray binaries
    § X-ray astronomy: timing, spectroscopy
    § Quasi-periodic oscillations (QPOs)
    § STROBE-X: proposed X-ray observatory
    § Stingray: open-source spectral-timing
    software
    Q&A Time #1
    Q&A Time #2
    Q&A Time #3
    2

    View Slide

  3. Outline
    A.L. Stevens • Michigan State U. & U. Michigan
    § Compact objects, low-mass X-ray binaries
    § X-ray astronomy: timing, spectroscopy
    § Quasi-periodic oscillations (QPOs)
    § STROBE-X: proposed X-ray observatory
    § Stingray: open-source spectral-timing
    software
    3

    View Slide

  4. Stellar remnants
    A.L. Stevens • Michigan State U. & U. Michigan
    Image: R.N. Bailey, CC BY 4.0, WikiMedia
    2
    2
    Compact
    objects
    4

    View Slide

  5. § Radius ~ 12 km (7.5 mi), mass ~ 1.5 MSun
    § Densityavg.
    ~ 1014 g/cm3 (the density of an atomic nucleus!)
    § Surface accelerationgravity
    ~ 1012 m/s2
    § Magnetic field ~ 108 - 1015 Gauss (104-1011 Tesla)
    § Spin frequencies up to 100’s of Hz
    Neutron stars (NSs)
    A.L. Stevens • Michigan State U. & U. Michigan
    Watts+16
    5

    View Slide

  6. Stellar black holes (BHs)
    § Ultracompact
    remnant of a
    massive star
    >20 MSun
    § Event
    horizon
    radius
    ~15 km for a
    10 MSun
    BH
    A.L. Stevens • Michigan State U. & U. Michigan 6

    View Slide

  7. A.L. Stevens • Michigan State U. & U. Michigan
    Image: NASA/CXC/M. Weiss
    Companion
    star ≲ 1 MSun
    Hot inner flow/
    corona
    Compact object
    (BH or NS)
    Accretion disk
    Low-mass X-ray binaries
    How does matter behave in strong gravitational fields?
    7

    View Slide

  8. A.L. Stevens • Michigan State U. & U. Michigan
    Low-mass X-ray binaries
    Image: NASA/CXC/M. Weiss
    10
    5 20
    0.1 1
    keV2 (Photons cm−2 s−1 keV−1)
    Energy (keV)
    Comptonized
    blackbody
    reflection
    Companion
    star ≲ 1 MSun
    Accretion disk
    Compact object
    (BH or NS)
    Hot inner flow/
    corona
    How does matter behave in strong gravitational fields?
    8

    View Slide

  9. A.L. Stevens • Michigan State U. & U. Michigan
    Low-mass X-ray binaries
    Image: NASA/CXC/M. Weiss
    1700
    1702
    1704
    1706
    1708
    1710
    2000
    4000
    6000
    8000
    104
    1.2×104
    Count/sec
    T
    im
    e
    (s)
    S
    tart T
    im
    e
    12339
    7:28:14:566
    S
    top
    T
    im
    e
    12339
    7:29:32:683
    B
    in
    tim
    e:
    0.7812E
    −02
    s
    Accretion disk
    X-ray variability
    Companion
    star ≲ 1 MSun
    Hot inner flow/
    corona
    Compact object
    (BH or NS)
    How does matter behave in strong gravitational fields?
    9

    View Slide

  10. A.L. Stevens • Michigan State U. & U. Michigan
    Low-mass X-ray binaries
    Image: NASA/CXC/M. Weiss
    10
    5 20
    0.1 1
    keV2 (Photons cm−2 s−1 keV−1)
    Energy (keV)
    Comptonized
    blackbody
    reflection
    Companion
    star ≲ 1 MSun
    Accretion disk
    Compact object
    (BH or NS)
    Hot inner flow/
    corona
    1700
    1702
    1704
    1706
    1708
    1710
    2000
    4000
    6000
    8000
    104
    1.2×104
    Count/sec
    T
    im
    e
    (s)
    S
    tart T
    im
    e
    12339
    7:28:14:566
    S
    top
    T
    im
    e
    12339
    7:29:32:683
    B
    in
    tim
    e:
    0.7812E
    −02
    s
    X-ray variability
    How does matter behave in strong gravitational fields?
    10

    View Slide

  11. Outline
    A.L. Stevens • Michigan State U. & U. Michigan
    § Compact objects, low-mass X-ray binaries
    § X-ray astronomy: timing, spectroscopy
    § Quasi-periodic oscillations (QPOs)
    § STROBE-X: proposed X-ray observatory
    § Stingray: open-source spectral-timing
    software
    11

    View Slide

  12. X-ray
    telescopes
    X-rays UV IR Microwaves Radio
    Image: Cool Cosmos/Caltech
    X-ray astronomy
    A.L. Stevens • Michigan State U. & U. Michigan 12

    View Slide

  13. X-ray telescopes: NICER
    A.L. Stevens • Michigan State U. & U. Michigan
    Image:
    NASA
    § Neutron star Interior Composition ExploreR
    § Launched 3 June 2017, attached to Int’l Space Station
    § All-in-one: better timing than RXTE and AstroSat,
    energy resolution of XMM-Newton, high throughput
    13

    View Slide

  14. X-ray telescopes: NICER
    A.L. Stevens • Michigan State U. & U. Michigan
    § Neutron star Interior Composition ExploreR
    § Launched 3 June 2017, attached to Int’l Space Station
    § All-in-one: better timing than RXTE and AstroSat,
    energy resolution of XMM-Newton, high throughput
    Image:
    NASA
    14

    View Slide

  15. A.L. Stevens • Michigan State U. & U. Michigan
    NICER in action
    15
    Video: NASA GSFC
    https://youtu.be/kk0ry3_R2pE

    View Slide

  16. X-ray spectroscopy
    § X-ray binaries are too small and far away for imaging
    § Like trying to image a human hair on the surface of Mars
    § Physical processes have characteristic energy distributions
    § Blackbody,
    multi-color
    blackbody
    § Inverse
    Compton
    up-scattering
    § “Reflection”
    A.L. Stevens • Michigan State U. & U. Michigan
    TOTAL COMPTONIZED
    REFLECTED
    DISK
    Image: Gilfanov10 16

    View Slide

  17. X-ray spectroscopy
    A.L. Stevens • Michigan State U. & U. Michigan
    0.5 1 1.5
    Line profile
    Gravitational redshift
    General relativity
    Transverse Doppler shift
    Beaming
    Special relativity
    Newtonian
    Eobs/Eem
    Newtonian
    Special relativity
    Transverse
    Doppler shift
    Beaming
    Gravitational
    redshift
    Line profile
    General relativity
    TOTAL COMPTONIZED
    REFLECTED
    DISK
    17

    View Slide

  18. “Soft” spectrum: strong
    accretion disk emission
    “Hard” spectrum: strong
    Comptonized emission
    A.L. Stevens • Michigan State U. & U. Michigan
    Same object, different spectra
    Images: Done+07; NASA/JPL-Caltech; NASA/GSFC
    1000
    18

    View Slide

  19. “Soft” spectrum: strong
    accretion disk emission
    “Hard” spectrum: strong
    Comptonized emission
    A.L. Stevens • Michigan State U. & U. Michigan
    Same object, different spectra
    Images: Done+07; NASA/JPL-Caltech; NASA/GSFC
    1000
    19

    View Slide

  20. “Soft” spectrum: strong
    accretion disk emission
    “Hard” spectrum: strong
    Comptonized emission
    A.L. Stevens • Michigan State U. & U. Michigan
    Same object, different spectra
    Images: Done+07; NASA/JPL-Caltech; NASA/GSFC
    1000
    20

    View Slide

  21. “Soft” spectrum: strong
    accretion disk emission
    “Hard” spectrum: strong
    Comptonized emission
    Spectrum changes in “outburst”
    over weeks to months
    A.L. Stevens • Michigan State U. & U. Michigan
    Same object, different spectra
    Images: Done+07; NASA/JPL-Caltech; NASA/GSFC
    1000
    21

    View Slide

  22. Fourier transforms
    A.L. Stevens • Michigan State U. & U. Michigan
    § X-rays from BHs and NSs vary on timescales from
    microseconds to years
    § Shorter (< 1 minute) variability: Fourier analysis!
    § Study time domain f in the frequency domain f
    § Break down light curve
    into sine waves, take
    amplitude of sines
    at each frequency
    ^
    Image: L. Barbosa via wikiMedia 22

    View Slide

  23. Fourier transforms
    A.L. Stevens • Michigan State U. & U. Michigan
    § X-rays from BHs and NSs vary on timescales from
    microseconds to years
    § Shorter (< 1 minute) variability: Fourier analysis!
    § Study time domain f in the frequency domain f
    § Break down light curve
    into sine waves, take
    amplitude of sines
    at each frequency
    ^
    Problem
    solution
    solve
    (hard)
    Transformed
    problem
    Transformed
    solution
    solve
    (easy)
    Fourier
    transform
    inverse
    Fourier
    transform
    Image: L. Barbosa via wikiMedia 23

    View Slide

  24. Applying Fourier transforms to data
    1016 1018 1020 1022 1024
    5000 104 1.5×104
    Count/sec
    Time (s)
    Start Time 10168 18:16:52:570 Stop Time 10168 18:17:08:180
    Bin time: 0.1562E−01 s
    Time domain
    Light curve
    Frequency/Fourier domain
    Power density spectrum
    FOURIER
    TRANSFORM2
    A.L. Stevens • Michigan State U. & U. Michigan
    Light curve broken into equal-length chunks (64 seconds),
    take power spectrum of each chunk,
    average those together
    24

    View Slide

  25. X-ray variability: Hard to see by eye
    1014 1016 1018 1020 1022
    5000 104 1.5×104
    Count/sec
    Time (s)
    CYGNUS_X−1
    Start Time 10168 18:16:52:578 Stop Time 10168 18:17:02:547
    Bin time: 0.3125E−01 s
    A.L. Stevens • Michigan State U. & U. Michigan
    1696 1698 1700 1702 1704
    4000 5000 6000 7000
    Count/sec
    Time (s)
    GRS1915+105
    Start Time 12339 7:28:14:582 Stop Time 12339 7:28:24:542
    Bin time: 0.4000E−01 s
    Light curves
    25

    View Slide

  26. X-ray variability: Hard to see by eye
    1014 1016 1018 1020 1022
    5000 104 1.5×104
    Count/sec
    Time (s)
    CYGNUS_X−1
    Start Time 10168 18:16:52:578 Stop Time 10168 18:17:02:547
    Bin time: 0.3125E−01 s
    A.L. Stevens • Michigan State U. & U. Michigan
    1696 1698 1700 1702 1704
    4000 5000 6000 7000
    Count/sec
    Time (s)
    GRS1915+105
    Start Time 12339 7:28:14:582 Stop Time 12339 7:28:24:542
    Bin time: 0.4000E−01 s
    Light curves
    Power density spectra
    Noise: Cygnus X-1 Signal: GRS 1915+105
    26

    View Slide

  27. Q&A Time #1:
    § Compact objects
    § X-ray binaries
    § X-ray observations
    § General spectral analysis
    § General timing analysis
    A.L. Stevens • Michigan State U. & U. Michigan 27

    View Slide

  28. Outline
    A.L. Stevens • Michigan State U. & U. Michigan
    § Compact objects, low-mass X-ray binaries
    § X-ray astronomy: timing, spectroscopy
    § Quasi-periodic oscillations (QPOs)
    § STROBE-X: proposed X-ray observatory
    § Stingray: open-source spectral-timing
    software
    28

    View Slide

  29. Strohmayer ‘01
    § High-frequency: 100’s Hz
    § Hot blobs in Keplerian orbit at inner disk edge?
    § Low-frequency: ~0.1-10’s Hz
    § Precession of corona/hot flow? Magnetic warps in
    disk? Comptonized disk fluctuations?
    A.L. Stevens • Michigan State U. & U. Michigan
    Quasi-periodic oscillations (QPOs)
    29

    View Slide

  30. QPOs → Damped harmonic oscillators
    A.L. Stevens • Michigan State U. & U. Michigan
    y = cos(⍵t)
    30

    View Slide

  31. QPOs → Damped harmonic oscillators
    A.L. Stevens • Michigan State U. & U. Michigan
    y = cos(⍵t) x e-bt
    b=0
    b=0.08
    31

    View Slide

  32. QPOs → Damped harmonic oscillators
    A.L. Stevens • Michigan State U. & U. Michigan
    y = cos(⍵t) x e-bt
    b=0
    b=0.08
    b=0.22
    32

    View Slide

  33. QPOs → Damped harmonic oscillators
    A.L. Stevens • Michigan State U. & U. Michigan
    y = cos(⍵t) x e-bt
    b=0
    b=0.08
    b=0.22
    b=0.5
    33

    View Slide

  34. QPOs → Damped harmonic oscillators
    A.L. Stevens • Michigan State U. & U. Michigan
    y = cos(⍵t) x e-bt
    b=0
    b=0.08
    b=0.22
    b=0.5
    b=1.0
    The stronger the damping,
    the wider the peak
    34

    View Slide

  35. QPOs → Damped harmonic oscillators
    A.L. Stevens • Michigan State U. & U. Michigan
    y = cos(⍵t) x e-bt The stronger the damping,
    the wider the peak
    Astrophysics:
    What is the cause of the oscillation?
    What is the cause of the damping/dissipation?
    What else are we not accounting for?
    b=0
    b=0.08
    b=0.22
    b=0.5
    b=1.0
    35

    View Slide

  36. LF QPOs: Lense-Thirring precession?
    A.L. Stevens • Michigan State U. & U. Michigan
    Stella+Vietri ‘98; Fragile+Anninos ‘05; Schnittman, Homan+Miller ‘06;
    Ingram+09; Ingram+van der Klis ‘15; Fragile+16; Ingram+16a,b; Liska+18
    Lense-Thirring precession/frame dragging with nodal precession
    Movie: L. Stein
    36

    View Slide

  37. LF QPOs: Lense-Thirring precession?
    ×
    A.L. Stevens • Michigan State U. & U. Michigan
    Hot inner flow (Comptonizing region)
    Accretion disk
    Disk color pattern: Doppler shifting and boosting of emission
    Stella+Vietri ‘98; Fragile+Anninos ‘05; Schnittman, Homan+Miller ‘06;
    Ingram+09; Ingram+van der Klis ‘15; Fragile+16; Ingram+16a,b; Liska+18
    37

    View Slide

  38. LF QPOs: Lense-Thirring precession?
    A.L. Stevens • Michigan State U. & U. Michigan
    See recent work by:
    Chattarjee, Liska,
    Markoff,
    Tchekhovskoy
    Movie: A. Tchekhovskoy
    ×
    38

    View Slide

  39. LF QPOs: Lense-Thirring precession?
    ×
    A.L. Stevens • Michigan State U. & U. Michigan
    Expect changing energy
    spectrum on sub-QPO
    timescale:
    • Normalization
    • Blackbody
    • Iron line profile
    Want to:
    • Determine low-freq.
    QPO emission
    mechanism
    • Different mechanism
    for QPO types?
    39

    View Slide

  40. Quasi-periodic signals:
    § not coherent enough to fold light
    curve
    § in time domain, signal would smear out!
    è average together signals in frequency domain
    § ephemeris not needed
    Phase-resolved spectroscopy
    Periodic signals:
    § fold light curve at pulse period,
    stack signal in time domain
    § need to know ephemeris of source
    See Miller+Homan ‘05; Ingram+van der Klis ‘15;
    Stevens+Uttley ‘16
    A.L. Stevens • Michigan State U. & U. Michigan 40

    View Slide

  41. A.L. Stevens • Michigan State U. & U. Michigan
    Power (rms2/Hz)
    Elapsed time (in 64 s segments)
    NICER observations of MAXI J1535
    Stevens+18
    Dynamical power spectrum: evolution of power spectrum in time
    41

    View Slide

  42. Power (rms2/Hz)
    Elapsed time (in 64 s segments)
    Broadband/band-limited noise
    Low-freq. QPO
    QPO harmonic
    Low-amplitude
    low-freq. QPO
    hiding here?
    A.L. Stevens • Michigan State U. & U. Michigan
    NICER observations of MAXI J1535
    Dynamical power spectrum: evolution of power spectrum in time
    42
    Stevens+18

    View Slide

  43. Power (rms2/Hz)
    Elapsed time (in 64 s segments)
    A.L. Stevens • Michigan State U. & U. Michigan
    NICER observations of MAXI J1535
    Yes!
    Needed to average
    together data
    segments for it to
    be visible.
    QPO
    Harmonic
    Broadband noise
    Dynamical power spectrum: evolution of power spectrum in time
    43
    Stevens+18

    View Slide

  44. MAXI J1535 phase spectra
    A.L. Stevens • Michigan State U. & U. Michigan
    § Ratio of QPO-
    phase-resolved
    spectra with the
    mean spectrum
    → how spectral
    components
    vary with QPO
    phase
    § ~25% phase lag
    gives it the
    “doing the wave”
    appearance
    Stevens+ in prep. 44

    View Slide

  45. MAXI J1535 phase spectra
    A.L. Stevens • Michigan State U. & U. Michigan
    § Ratio of QPO-
    phase-resolved
    spectra with the
    mean spectrum
    → how spectral
    components
    vary with QPO
    phase
    § ~25% phase lag
    gives it the
    “doing the wave”
    appearance
    Stevens+ in prep.
    Due to lag sign and
    binary inclination, we
    predict a compact,
    smaller scale-height
    emitting region
    Image: Ingram+09
    45

    View Slide

  46. LF QPOs linked to discrete jet ejecta
    A.L. Stevens • Michigan State U. & U. Michigan
    § Transition between 2 types
    of LF QPOs (along with
    broadband spectral changes)
    correlates with radio jet
    “turning off” and discrete jet
    ejecta
    § Long suspected! Radio flare
    within ~day of QPOs for
    6 BHs studied in Fender+09,
    Miller-Jones+12, Russell+19
    § MAXI J1820+070 (right):
    Type-B QPO turning off at
    start of flare (using NICER,
    AMI-LA)
    Homan+20 (incl. ALS) 46

    View Slide

  47. LF QPOs linked to discrete jet ejecta
    A.L. Stevens • Michigan State U. & U. Michigan
    § Transition between 2 types
    of LF QPOs (along with
    broadband spectral changes)
    correlates with radio jet
    “turning off” and discrete jet
    ejecta
    § Long suspected! Radio flare
    within ~day of QPOs for
    6 BHs studied in Fender+09,
    Miller-Jones+12, Russell+19
    § MAXI J1820+070 (right):
    Type-B QPO turning off at
    start of flare (using NICER,
    AMI-LA)
    Homan+20 (incl. ALS)
    § QPO emission mechanism/region
    closely connected with jet emission
    region (see Homan+20, incl. ALS)
    § Meg Davis tried phase-resolving the
    “Type B” QPO (purple arrow) to
    dig deeper, too low amplitude for
    full phase-resolved spectroscopy
    47

    View Slide

  48. Q&A Time #2:
    § QPOs (quasi-periodic oscillations)
    § Emission mechanisms like precession
    § Observational and analytical techinques
    A.L. Stevens • Michigan State U. & U. Michigan 48

    View Slide

  49. Outline
    A.L. Stevens • Michigan State U. & U. Michigan
    § Compact objects, low-mass X-ray binaries
    § X-ray astronomy: timing, spectroscopy
    § Quasi-periodic oscillations (QPOs)
    § STROBE-X: proposed X-ray observatory
    § Stingray: open-source spectral-timing
    software
    49

    View Slide

  50. Future X-ray telescope:
    A.L. Stevens • Michigan State U. & U. Michigan
    X-ray Concentrator
    Array (0.2-12 keV)
    Wide Field Monitor
    (2-50 keV)
    Large Area Detector
    (2-30 keV)
    Solar panels
    RXTE
    Electronics,
    antenna, etc.
    See Ray+18 (incl. ALS)
    50

    View Slide

  51. A.L. Stevens • Michigan State U. & U. Michigan
    RXTE
    Electronics,
    antenna, etc.
    Science drivers: spin distribution of BHs, accretion disk winds, disk-jet
    connection, NS equation of state, burst oscillations, GRBs, LIGO EM
    counterparts, TDEs, discovering new sources, etc!
    Video from NASA Mission Design Lab, April 2018
    § Combines strengths of
    NICER and LOFT:
    high throughput X-ray
    timing with good
    spectroscopy
    § All components
    already at high tech.
    readiness level
    § Highly modular design
    Future X-ray telescope:
    51

    View Slide

  52. A.L. Stevens • Michigan State U. & U. Michigan
    RXTE
    Electronics,
    antenna, etc.
    Science drivers: spin distribution of BHs, accretion disk winds, disk-jet
    connection, NS equation of state, burst oscillations, GRBs, LIGO EM
    counterparts, TDEs, discovering new sources, etc!
    Video from NASA Mission Design Lab, April 2018
    For my research: <1ms time resolution + CCD
    energy resolution + soft X-ray coverage è Resolve
    how physical components vary, where they’re located
    § Combines strengths of
    NICER and LOFT:
    high throughput X-ray
    timing with good
    spectroscopy
    § All components
    already at high tech.
    readiness level
    § Highly modular design
    Future X-ray telescope:
    52

    View Slide

  53. Outline
    A.L. Stevens • Michigan State U. & U. Michigan
    § Compact objects, low-mass X-ray binaries
    § X-ray astronomy: timing, spectroscopy
    § Quasi-periodic oscillations (QPOs)
    § STROBE-X: proposed X-ray observatory
    § Stingray: open-source spectral-timing
    software
    53

    View Slide

  54. § Open-source timing and spectral-timing
    software (Astropy affiliated package!)
    § Stingray: Python library of analysis tools
    § HENDRICS: shell scripting interface
    § DAVE: graphical user interface
    § Tutorials in Jupyter(/iPython) notebooks
    § Well-documented, automated unit tests, 95% test
    coverage
    § Huppenkothen, Bachetti, ALS+2019, ApJ & JOSS
    § Google Summer of Code students in 2016-2020
    (including S. Sharma* in 2018)
    Stingray
    A.L. Stevens • Michigan State U. & U. Michigan
    StingraySoftware.github.io
    * Student mentored by ALS
    54

    View Slide

  55. Mental wellbeing is important
    A.L. Stevens • Michigan State U. & U. Michigan
    § There is a mental health crisis
    among academics
    § ~1/3 of grad students meet criteria
    for depression
    § Gender minorities had much higher
    rates of problems than cis-men
    § Work and organizational context
    (incl. satisfaction with advising and
    work environment) are significant
    predictors of mental health
    § Stats, tools, resources:
    abigailstevens.com/mental-
    wellbeing-academia
    § Be aware, take care of yourself,
    look out for friends and
    colleagues
    55

    View Slide

  56. Summary
    GitHub: abigailStev
    Email: [email protected]
    Twitter: @abigailStev

    A.L. Stevens • Michigan State U. & U. Michigan
    § X-ray binaries are awesome! One of the best tools to
    study matter in strong gravitational fields
    § Use X-ray spectral-timing analysis to decipher
    emission mechanisms for rapid variability
    § Low-freq. quasi-periodic oscillations: precessing hot
    inner flow/base of jet?
    § Variability transitions linked to discrete jet ejecta
    § NICER: soft X-ray telescope on International Space
    Station
    § STROBE-X: proposed large-area X-ray observatory
    § Stingray: github.com/
    StingraySoftware

    View Slide