Upgrade to Pro — share decks privately, control downloads, hide ads and more …

SOSTAT 2021: Time Series Analysis

SOSTAT 2021: Time Series Analysis

Introduction lecture to time series analysis in astronomy for the 2nd Severo Ochoa School on Statistics, Data Mining, and Machine Learning in Granada, Spain: https://www.granadacongresos.com/sostat2021

Tutorial in Jupyter notebooks: https://github.com/abigailStev/timeseries-tutorial

More on Dr. Abbie Stevens: https://abigailstevens.com/

Avatar for Dr. Abbie Stevens

Dr. Abbie Stevens

December 01, 2021
Tweet

More Decks by Dr. Abbie Stevens

Other Decks in Science

Transcript

  1. Time series analysis Dr. Abbie Stevens Michigan State University &

    University of Michigan [email protected] @abigailStev github.com/abigailstev
  2. Outline •Intro to the Fourier domain •Evenly-spaced and irregular time

    series •Power spectra/periodograms •Coffee break and tutorial time •Wavelets, Hilbert-Huang transform •Spectrograms/dynamical power spectra •Examples of astronomical signals •More coffee and more tutorial time IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 2
  3. The Fourier series Any function can be represented as a

    sum of sines and cosines (with some coefficients, which may also be functions) IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 3 f(x) = ∑ An cos(n 𝜋 x) + ∑ Bn sin(n 𝜋 x) n=0 n=1 ∞ ∞ Slide adapted from J. McIver
  4. The Fourier series IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU &

    UMich 4 Image credit: J. Belk via Wikimedia Example: first four Fourier approximation terms for a square wave The more terms you add, the closer the approximation gets
  5. The Fourier transform Take a periodic or well-bounded function (of

    time or space) by projecting f(t) onto an orthogonal basis of sines and cosines IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 5 F(𝜈) = ∫ f(t) e-i2𝜋𝜈t dt f(t) ⇾ F(𝜈) [or f(𝜈)] ^ f(t) = ∫ F(𝜈) ei2𝜋𝜈t d𝜈 Fourier transform Inverse Fourier transform Slide adapted from J. McIver
  6. The Fourier transform IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU &

    UMich GIF: L. Vieira via Wikimedia 6 Slide adapted from J. McIver f(t) ⇾ F(𝜈) [or f(𝜈)] ^ Think of it like decomposing the time series function into its component frequencies
  7. The Fourier transform IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU &

    UMich Problem solution solve (hard) Transformed problem Transformed solution solve (easy) 8 Fourier transform inverse Fourier transform The Fourier transform and inverse Fourier transform make “Fourier pairs”
  8. Sampling effect: Nyquist frequency IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU

    & UMich 9 The more terms you add, the closer the approximation gets
  9. Sampling effect: Nyquist frequency •In practice, cannot add terms forever!

    •Highest frequency you can sample: 𝜈Nyquist = 1/(2*dt) = d𝜈/2 IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 10 The more terms you add, the closer the approximation gets
  10. Positive and negative Fourier frequencies • Mirrored about 0 Hz

    • In an array, often arranged: (0, pos., Nyquist, neg.) IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 11 Image: J. VanderPlas 2018
  11. Evenly-sampled time series • Signal period << observation length •

    In X-rays and gamma-rays, we count photons. It’s very possible to have zero counts -- “sparse” light curves are common • Instead of saving light curves with lots of zeroes, we use event lists – can select a dt multiple of the detector’s dt • In optical, bright-enough sources mean you detect flux above background in every time bin (e.g., every 30 seconds) • Kepler, K2, TESS can give evenly sampled time series IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 1700 1702 1704 1706 1708 1710 2000 4000 6000 8000 10 4 1.2×10 4 Count/sec Time (s) Start Time 12339 7:28:14:566 Stop Time 12339 7:29:32:683 Bin time: 0.7812Eï02 s 12
  12. Applying Fourier transforms to data IAA-SOSTAT 2021 ☆ Abbie Stevens,

    MSU & UMich 1016 1018 1020 1022 1024 5000 104 1.5×104 Count/sec Time (s) Start Time 10168 18:16:52:570 Stop Time 10168 18:17:08:180 Bin time: 0.1562Eï01 s Time domain Light curve Frequency/Fourier domain Power density spectrum FOURIER TRANSFORM2 Light curve broken into equal-length chunks or segments, take power spectrum of each chunk, average those together x(t)→X(ν) P(ν)=X(ν)X*(ν) =|X(ν)|2 13
  13. Irregularly sampled time series • Many (most?) astronomical time series

    will be irregularly sampled Ø Signal period > observation length Ø Observing cadence Ø Weather Ø Visibility IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 14 Reference: J. VanderPlas 2018, “Understanding the Lomb-Scargle Periodogram”
  14. Lomb-Scargle periodogram saves the day! • Multiplies your Fourier signal

    X(ν) with the Fourier transform of the sampling window ⇾ “convolution” IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 15 Reference: J. VanderPlas 2018, “Understanding the Lomb-Scargle Periodogram” When interpreting: beware many noisy peaks and harmonics due to the sampling window convolved with noise in the data
  15. X-ray variability: Hard to see by eye 1014 1016 1018

    1020 1022 5000 104 1.5×104 Count/sec Time (s) CYGNUS_Xï1 Start Time 10168 18:16:52:578 Stop Time 10168 18:17:02:547 Bin time: 0.3125Eï01 s IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 1696 1698 1700 1702 1704 4000 5000 6000 7000 Count/sec Time (s) GRS1915+105 Start Time 12339 7:28:14:582 Stop Time 12339 7:28:24:542 Bin time: 0.4000Eï01 s Light curves Power density spectra Noise: Cygnus X-1 Signal: GRS 1915+105 16
  16. QPOs → Damped harmonic oscillators IAA-SOSTAT 2021 ☆ Abbie Stevens,

    MSU & UMich y = cos(⍵t) 17 I will discuss a little QPO physics in the next lecture later today
  17. QPOs → Damped harmonic oscillators IAA-SOSTAT 2021 ☆ Abbie Stevens,

    MSU & UMich y = cos(⍵t) x e-bt b=0 b=0.08 18
  18. IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich y =

    cos(⍵t) x e-bt b=0 b=0.08 b=0.22 19 QPOs → Damped harmonic oscillators
  19. QPOs → Damped harmonic oscillators IAA-SOSTAT 2021 ☆ Abbie Stevens,

    MSU & UMich y = cos(⍵t) x e-bt b=0 b=0.08 b=0.22 b=0.5 20
  20. QPOs → Damped harmonic oscillators IAA-SOSTAT 2021 ☆ Abbie Stevens,

    MSU & UMich y = cos(⍵t) x e-bt b=0 b=0.08 b=0.22 b=0.5 b=1.0 The stronger the damping, the wider the peak 21
  21. Poisson noise (“white noise”) Poisson noise from counting photons; power-law

    slope=0 IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 22
  22. Sampling effect: Aliasing IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU &

    UMich 24 Resonance between signal freq. and sample freq. gives false feature Video credit: Honda Windowing: similar false feature due to segment (“window”) length
  23. Tutorial time •In the SOSTAT2021 Jupyter hub: tutorials/abigail_timeseries/timeseries_workbook.ipynb •On my

    GitHub: https://github.com/abigailStev/timeseries-tutorial IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 25
  24. Wavelets • Fourier products don’t have an intrinsic way to

    tell time resolution (i.e., when in the light curve the signal is present) • Wavelets easily represent a signal in the time domain and in the frequency domain Resource: “A really friendly guide to wavelets”, C. Valens, 1999 IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 26
  25. Wavelets aren’t great for everything •Averaged power spectra (~50+ segments)

    follow a chi-squared distribution with 2 degrees of freedom, about the underlying true power spectrum • Errors are statistically well-defined and well-understood (and easy to compute!) •Wavelets do not follow such a well-defined and well- known distribution •No clear, easy way to assess statistical significance of a signal (which is one of the things we often want to do) IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 27
  26. Wavelets are fantastic for gravitational waves! IAA-SOSTAT 2021 ☆ Abbie

    Stevens, MSU & UMich 28 See also: “Q-transform”
  27. Time (s) 40 41 42 43 44 45 46 47

    48 49 50 Frequency (Hz) 1 2 3 4 5 6 7 8 9 10 Gaussian smoothing amplitude 0 5 10 15 20 25 30 Hilbert-Huang transform • Frequency-domain product designed for data that are non- stationary and non-linear • Like an instantaneous Fourier transform → gives (some) time localization! • Error from standard deviation of (1000+) simulations IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich See Su+15 & refs therein for application to black hole data 0.01 0.1 1 10 100 10 100 Frequency(Hz) Power (Leahy) Hilbert spectrum from Su+15 of a 4Hz QPO 29
  28. Elapsed time (in 64 s segments) Power (rms2/Hz) Elapsed time

    (in 64 s segments; not continuous) Spectrogram (dynamical power spectrum) •Evolution of a power spectrum in time •Instead of averaging together, plot in colormap IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 30
  29. Elapsed time (in 64 s segments) Power (rms2/Hz) Elapsed time

    (in 64 s segments; not continuous) Good Time Intervals (GTIs) • Jumps in the spectrogram below are cut out • Looks like tophat windows in big light curve, but the segments we use for the periodogram and averaging are much smaller than the window length IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 31
  30. Things to sometimes worry about • Deadtime occurs with X-ray

    detectors if your (bright) source is emitting photons faster than your detector can handle. Once some chip of the detector has detected a photon, it cannot detect another photon until it reads out its existing photon detection through the electronics. ØMeasurable as deviation from expected Poisson noise power- law at high frequencies in the power spectrum ØAccumulates over an observation; for a few ks observation, could have several seconds of deadtime to adjust the exposure time by • Pile-up is a sibling of deadtime that affects spectra IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 32
  31. Things to sometimes worry about IAA-SOSTAT 2021 ☆ Abbie Stevens,

    MSU & UMich 33 Slide adapted from D. Huppenkothen; credit: NuSTAR Observatory Guide ‘Deadtime’ ⇾ the detector is effectively dead for the brief readout period. NuSTAR
  32. Things to sometimes worry about IAA-SOSTAT 2021 ☆ Abbie Stevens,

    MSU & UMich 34 Slide adapted from D. Huppenkothen; credit: Huppenkothen & Bachetti 2021 (in press) Huppenkothen & Bachetti (under review)
  33. Poisson noise (a form of “white noise”) • In power

    spectra: P~ν𝛼, 𝛼=0 • Not correlated on any timescale IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 35
  34. Flicker noise • In power spectra: P~ν𝛼, 𝛼=-1 • Correlated

    on medium-short timescales (short “memory”) IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 36
  35. Red noise (random walk) • In power spectra: P~ν𝛼, 𝛼=-2

    • Correlated on long timescales (long “memory”) • Ornstein-Uhlenbeck: ~red noise + friction: tends towards a mean value over long time IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 37
  36. Beware of red noise! • Cannot apply standard peak-finding algorithms,

    since those assume white noise (see Vaughan & Uttley ‘06) • Bigger issue for SMBHs than stellar BHs due to timescales White/Poisson noise Red noise Smith+18b Fourier frequency IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 38
  37. Red noise vs signals −2 0 2 4 6 8

    10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (a) −2 0 2 4 6 8 10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (b) • • • • • • • • • • • • • • • • • • • • • (c) PG 1302-102, CRTS data Vaughan+16 (figure); Liu+18 Data looks periodic! IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 39
  38. Red noise vs signals −2 0 2 4 6 8

    10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (a) −2 0 2 4 6 8 10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (b) • • • • • • • • • • • • • • • • • • • • • (c) PG 1302-102, CRTS data Vaughan+16 (figure); Liu+18 Uneven sampling, gappy data, only ~1.5 cycles Data looks periodic! IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 40
  39. Red noise vs signals IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU

    & UMich −2 0 2 4 6 8 10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (a) −2 0 2 4 6 8 10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (b) • • • • • • • • • • • • • • • • • • • • • (c) Vaughan+16 (figure); Liu+18 PG 1302-102, CRTS data Also including LINEAR data (but it isn’t) Sampling a random red noise process in same way can look like a “periodic” signal Uneven sampling, gappy data, only ~1.5 cycles Data looks periodic! 41
  40. Red noise vs signals IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU

    & UMich −2 0 2 4 6 8 10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (a) −2 0 2 4 6 8 10 12 time (yr) V mag • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15.2 15.0 14.8 (b) • • • • • • • • • • • • • • • • • • • • • (c) Vaughan+16 (figure); Liu+18 Data looks periodic! Uneven sampling, gappy data, only ~1.5 cycles PG 1302-102, CRTS data Sampling a random red noise process in same way can look like a “periodic” signal Also including LINEAR data When in doubt, simulate! Also: claimed periodicity in J0045+41 disproven by Barth & Stern ‘18 42
  41. Cross spectra IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich

    x(t)→X(ν) for a narrow energy band y(t)→Y(ν) for a broad-energy reference band As you average segments together: signal adds, noise cancels CXY (ν)=X(ν)Y*(ν) real imaginary 43 real imaginary
  42. Cross spectra IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich

    x(t)→X(ν) for a narrow energy band y(t)→Y(ν) for a broad-energy reference band Cospectrum: real part of the cross spectrum (see Bachetti+15, Bachetti+Huppenkothen 18 and Huppenkothen+Bachetti 18 for statistical details) Note: for X(ν)=Y(ν), cospectrum = cross amplitude = power spectrum 44 Also used: amplitude of the cross spectrum
  43. What other science cases might use these timing analysis tools?

    IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich
  44. Strohmayer 2001 0.1 1 10 100 2 4 6 8

    Type-A 0.1 1 10 100 101 Leahy Power Type-B 0.1 1 10 100 Frequency [Hz] 101 Type-C Stevens Mo1a+17a QPOs in black holes and neutron stars • High-frequency: 100’s Hz • Hot Keplerian blobs in inner disk? • Low-frequency: ~0.01-10’s Hz • Precession of corona/hot flow? Magnetic warps in disk? IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 46
  45. • Short-timescale variability changes on long timescales (spectral state- dependent)

    • Short-timescale variability is energy- dependent IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich Corona-dominated state Mostly-corona-dominated state Disk-dominated state Few months for full spectral state transition Mostly-disk-dominated state If you want to read more, see the power colours paper by Heil+15a 47 QPOs in black holes and neutron stars
  46. • Short-timescale variability changes on long timescales (spectral state- dependent)

    • Short-timescale variability is energy- dependent IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich A B C D 2-60 keV 6.5-13.1 keV 13.1-60 keV 2-6.5 keV Homan+01 48 QPOs in black holes and neutron stars
  47. Pulsations in neutron stars • Spin-down: decreasing spin frequency (e.g.,

    losing rotational energy to the environment) • Spin-up: increasing spin frequency (e.g., accreting material and thus increasing angular momentum) • Glitch: sudden change in spin frequency (due to superfluid NS core?) • Seen in residuals of frequency or pulse timing IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich -400 -300 -200 -100 0 Timing residuals (ms) (a) -100 -50 0 50 100 Days from MJD = 53067.1 -3.750 -3.745 -3.740 -3.735 ν (10-10 Hz s-1) • (d) -100 -50 0 50 100 0 1 2 3 4 5 6 Δν (μHz) (c) -100 -50 0 50 100 -200 -100 0 100 200 Timing residuals (ms) (b) Espinoza+11 49
  48. Stellar pulsations • Cepheid variables, RR Lyrae stars, Delta Scuti

    variables, Blahzko effect (long-period modulation of the periodicity) • Period-luminosity relation makes them standard candles used as “cosmic distance ladder” • Slow enough (periods > hours) that time-domain photometry is often used IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich Image via APOD, credit: R. Vanderbei, ESA/Gaia/DPAC 50
  49. Asteroseismology (“starquakes”) • Understanding the internal structure of stars using

    their brightness oscillations • Convective zone excites oscillations • Fourier analysis of light curves: often see many harmonics IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich Info thanks to online slides by T. Bedding and refs therein Aerts+19 51
  50. QPOs in active galactic nuclei (AGN) • ~1 hr “periodicity”,

    91ks observation • RE J1034+396 is a narrow-line Seyfert 1 AGN • Saw 16 ‘cycles’ (periods) in one uninterrupted observation! • Evenly-sampled time bins • Signal attributed to high-freq. QPO • If at innermost stable circular orbit, MBH ~7x106-1x107 M☉ IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich Gierlinski+08 Alston+14 52
  51. Smith+18b • 44 day low-freq. QPO in KIC 9650712 •

    NLS1 in original Kepler field • 30-minute cadence over 3.5 years: ~30 cycles • Tested periodicity via simulations (Uttley+02) and Lomb- Scargle periodogram IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 53 QPOs in active galactic nuclei (AGN)
  52. • Open-source timing and spectral-timing software (Astropy affiliated package) Øhttps://docs.stingray.science

    • Stingray: Python library of analysis tools • HENDRICS: shell scripting interface • DAVE: graphical user interface • Tutorials in Jupyter notebooks • Huppenkothen, Bachetti, Stevens et al. 2019, ApJ & JOSS • Google Summer of Code students in 2016-2021 Stingray Please remember to cite software in your papers! IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 54
  53. Time series resources Evenly-sampled time series: • Uttley et al.

    2014, “X-ray Reverberation Around Accreting Black Holes” Irregularly-sampled time series: • VanderPlas 2018, “Understanding the Lomb-Scargle Periodogram” Wavelets: • C. Valens 1999, “A really friendly guide to wavelets” Software tools: • Stingray, Lightkurve, GWpy, astropy.timeseries IAA-SOSTAT 2021 ☆ Abbie Stevens, MSU & UMich 55