Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sharding is hard.
Search
Rafał Malinowski
March 15, 2014
Programming
3
370
Sharding is hard.
Rafał Malinowski
March 15, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
Graviton と Nitro と私
maroon1st
0
150
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
180
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
470
JETLS.jl ─ A New Language Server for Julia
abap34
2
460
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
110
AtCoder Conference 2025
shindannin
0
790
Patterns of Patterns
denyspoltorak
0
380
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
540
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.4k
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
560
KATA
mclloyd
PRO
33
15k
The Pragmatic Product Professional
lauravandoore
37
7.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
Building Adaptive Systems
keathley
44
2.9k
The Invisible Side of Design
smashingmag
302
51k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
Discover your Explorer Soul
emna__ayadi
2
1k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Into the Great Unknown - MozCon
thekraken
40
2.2k
How GitHub (no longer) Works
holman
316
140k
Transcript
SHARDING server #1 server # server #
Database is still main problem of web app
SCALABILITY !
ALTER TABLE ADD INDEX
JOIN is evil
denormalize users_links user_id link 1 phpers.pl 1 meetphp.pl 1 php3city.pl
… … select count(*) from users_links where user_id=1; users user_id link 1
[email protected]
users_links user_id link 1 phpers.pl 1 meetphp.pl 1 php3city.pl …
… select links_count from users where user_id=1; users user_id link links_count 1
[email protected]
100. 000 denormalize
memcached alternative PHP cache xcache redis
sphinx search lucene ! solr elastic search
Replication master slave slave SELECT UPDATE DELETE INSERT SELECT SELECT
Replication master master master SELECT UPDATE DELETE INSERT SELECT UPDATE
DELETE INSERT SELECT UPDATE DELETE INSERT
Replication is harder than you think!
know your tools
Rafał Malinowski @afterdesign
None
None
None
None
None
SHARDING
Sharding is a type of database partitioning that separates very
large databases into smaller parts called data shards The Internet
user_id link 1 phpers.pl 1 meetphp.pl 1 php3city.pl
user_id link 1 phpers.pl user_id link 1 meetphp.pl user_id link
1 php3city.pl
None
How to shard ?
modulo
key % shards count = server id
sh.st/1
crc32('1') % 3 = 2
Sharding is hard. Resharding is harder !
crc32('1') % 3 = 2 crc32('1') % 4 = 3
db0 db1 4 5 6 7 0 1 2 3
8 9 db0 db2 db1
db0 db1 4 5 6 7 0 1 2 3
8 9 db0 db2 db1 db2 db3
shards moved rows 2 → 3 667 402 2 →
4 500 000 2 → 5 800 468 3 → 4 750 357 3 → 5 800 060 4 → 5 800 247
key map
shard_X url_id goto date
shards_counters shard_id count 1 0 2 0 shard_X url_id goto
date
shard_X url_id goto date shards_counters shard_id count 1 0 2
0 sharding_map url_id shard_id
meetphp.pl
shards_counters shard_id count 1 0 2 0 SELECT `shard_id` FROM
`shards_counters` ORDER BY `count` LIMIT 1;
shards_counters shard_id count 1 1 2 0 meetphp.pl sharding_map url_id
shard_id 1 1 sh.st/1
shards_counters shard_id count 1 1 2 0 shard_1.urls url_id goto
date 1 meetphp.pl 2014-01-01 sharding_map url_id shard_id 1 1
shards_counters shard_id count 1 1 2 0 SELECT `shard_id` FROM
`sharding_map` WHERE `url_id` = 1; sharding_map url_id shard_id 1 1
SELECT * FROM `urls` WHERE `url_id` = 1; shard_1.urls url_id
goto date 1 meetphp.pl 2014-01-01
phpers.pl
shards_counters shard_id count 1 1 2 0 SELECT `shard_id` FROM
`shards_counters` ORDER BY `count` LIMIT 1;
shards_counters shard_id count 1 1 2 1 sharding_map url_id shard_id
1 1 2 2 phpers.pl sh.st/2
shards_counters shard_id count 1 1 2 1 shard_2.urls url_id goto
date 2 phpers.pl 2014-01-01 sharding_map url_id shard_id 1 1 2 2
shards_counters shard_id count 1 1 2 1 SELECT `shard_id` FROM
`sharding_map` WHERE `url_id` = 2; sharding_map url_id shard_id 1 1 2 2
SELECT * FROM `shard_2.urls ` WHERE `url_id` = 2; shard_2.urls
url_id goto date 2 phpers.pl 2014-01-01
Key is unique throughout system
Adding shards ?
consistent hashing
0 max(int) shard_3 crc32('127.0.0.1') = 3619153832 shard_2 crc32('127.0.0.2') = 1321121298
shard_1 crc32('127.0.0.3') = 968459908
0 max(int) meetphp.pl crc32('127.0.0.1') = 3619153832 crc32('127.0.0.2') = 1321121298 crc32('127.0.0.3')
= 968459908
0 max(int) crc32('meetphp.pl') = 3254572804 crc32('127.0.0.1') = 3619153832 crc32('127.0.0.2') =
1321121298 crc32('127.0.0.3') = 968459908 meetphp.pl
sh.st/3254572804 meetphp.pl crc32('meetphp.pl') = 3254572804
shard_3.urls url_id goto date 3254572804 meetphp.pl 2014-01-01 crc32('127.0.0.1') = 3619153832
0 max(int) crc32('127.0.0.1') = 3619153832 crc32('127.0.0.2') = 1321121298 crc32('127.0.0.3') =
968459908 crc32('phpers.pl') = 42311941 phpers.pl
sh.st/42311941 phpers.pl crc32('phpers.pl') = 42311941
shard_1.urls url_id goto date 42311941 phpers.pl 2014-01-01 crc32('127.0.0.3') = 968459908
Searching is expensive
ketama
0 max(int) crc32('127.0.0.1') crc32('127.0.0.2') crc32('127.0.0.3')
buckets = {}
$bucketsCount = 1024; ! for ($i = 0; $i <
$bucketsCount; $i++) { buckets[i] = max(int) / $bucketsCount * i }
crc32('127.0.0.1') crc32('127.0.0.2') crc32('127.0.0.3') 0 max(int) buckets[0] = 127.0.0.2
0 max(int) crc32('127.0.0.1') crc32('127.0.0.2') crc32('127.0.0.3') buckets[261] = 127.0.0.1
crc32('127.0.0.1') crc32('127.0.0.2') crc32('127.0.0.3') 0 max(int) buckets[772] = 127.0.0.1
meetphp.pl crc32('meetphp.pl') = 3254572804 3254572804 % 1024 = 772
buckets[772] = shard 3
phpers.pl crc32('phpers.pl') = 42311941 42311941 % 1024 = 261
buckets[261] = shard 3
shard_3.urls url_id goto date 1 meetphp.pl 2014-01-01 2 phpers.pl 2014-01-01
resharding ?
1 6
1 6 2
1 6 2 3
1 6 2 3
data distribution
oversharding
problems sharding implementation ? which tables shard ? how big
are our tables ?
problems data count pagers/lists
sharding count insert/select one of the last things to do
Rafał Malinowski @afterdesign