Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Comprehensive Tutorial of Level Set Method
Search
Liam Jongsu Kim
June 04, 2013
Science
0
710
Comprehensive Tutorial of Level Set Method
Liam Jongsu Kim
June 04, 2013
Tweet
Share
More Decks by Liam Jongsu Kim
See All by Liam Jongsu Kim
Dive into Triton Internals
appleparan
0
280
Other Decks in Science
See All in Science
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
1.1k
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
600
データマイニング - ウェブとグラフ
trycycle
PRO
0
190
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
410
2025-06-11-ai_belgium
sofievl
1
170
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
データマイニング - ノードの中心性
trycycle
PRO
0
290
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
210
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
110
機械学習 - SVM
trycycle
PRO
1
910
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1k
Lean4による汎化誤差評価の形式化
milano0017
1
340
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
We Have a Design System, Now What?
morganepeng
53
7.9k
Six Lessons from altMBA
skipperchong
29
4k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Writing Fast Ruby
sferik
630
62k
A better future with KSS
kneath
239
18k
Navigating Team Friction
lara
190
15k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
4 Signs Your Business is Dying
shpigford
186
22k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
Comprehensive Guide of Level Set Method with Fluid Mechanics Jongsu
Kim Department of Computational Science and Engineering Yonsei University 1
Yonsei University 2/00 Contents • Motivation • Level Set Method
• Level Set Reinitialization • Numerical Schemes • Conclusion
Yonsei University 3/00 Multiphase Phase Flow •
Yonsei University 4/00 • • • • • • •
• Multiphase Phase Flow
Yonsei University 5/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 6/00 Modification of Navier-Stokes Equation • = −
+ 2 + = − + 2 + ⋅ = 0 Ω What equation at the interface?
Yonsei University 7/00
Yonsei University 8/00 CSF Model • • 1 − 2
+ = 1 − 2 + 1 − 2 + = 21 1 − 22 2 2 + 2 − 1 + 1 = •
Yonsei University 9/00 CSF Model • = () • ()
() = [] () = 1 ( 1) 2 ( 2) < > = 1 + 2 /2 ( ℎ ) = 2 − 1
Yonsei University 10/00 What We Have Done • = −
+ 2 + , = 0 = − + 2 + , = 0 ⋅ = 0 Ω 2 − = − + ul = ug , x ∈ Γ Three equations.. Should we solve these equation separately? And how we know the interface?
Yonsei University 11/00 VOF Method • • • • =
1 ( 2) (0 < < 1) + ⋅ = 0
Yonsei University 12/00 VOF Method • • • • •
Yonsei University 13/00 Level Set Method = =0 = ⋅
=0 , = < 0, ( ) > 0, ( ) = 0 ( ℎ )
Yonsei University 14/00 = , > 0 , ≤ 0
+ ⋅ = 0 , = < 0, ( ) > 0, ( ) = 0 ( ℎ ) Level Set Method
Yonsei University 15/00 + ⋅ = 0 Γ , ,
(, ) , = , , , , , = ( , , , ) ( , , , , ) (, ) Γ , , , , ≡ + + = + + Level Set Method
Yonsei University 16/00 , = < 0, ( ) >
0, ( ) = 0 ( ℎ ) () = , ( ) , ( ) + /2, () () = , ( ) , ( ) + /2, () Level Set Method
Yonsei University 17/00 = − + ⋅ 2 − +
Level Set Method () () = + − , = + − () What We Have Done () = 0, < 0 1 2 , = 0 1, > 0 However, we still have a discontinuity … + ⋅ = 0
Yonsei University 18/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 19/00 → () Heaviside Function () = 0,
< − 1 2 1 + + 1 sin / , || ≤ 1, > +
Yonsei University 20/00 Distance Function • • 2 |∇| ()
= 0, < − 1 2 1 + + 1 sin / , || ≤ 1, > + • ∇ = 1 ≤ • ∇ = 1 ∈ Ω = 0 ∈ Γ The distance function = The level set function?
Yonsei University 21/00 Level Set Reinitialization = (1 − ∇
) , 0 = () sign = −1, < 0 0, = 0 1, > 0 ∇ = 1 ∈ Ω = 0 ∈ Γ |∇| = 1 |∇| = 1 ≤ Do we solve this equation each iteration?
Yonsei University 22/00 Level Set Reinitialization = (1 − ∇
) + ⋅ ∇ = = ∇ |∇| •
Yonsei University 23/00 Level Set Reinitialization •
Yonsei University 24/00 Level Set Reinitialization What We Have Done
= − + ⋅ 2 − + + ⋅ = 0 () = 0, < − 1 2 1 + + 1 sin / , || ≤ 1, > + + ⋅ ∇ = Are we done?
Yonsei University 25/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 26/00 Back to Equation = − + ⋅
2 − + + ⋅ = 0
Yonsei University 27/00 Back to Equation = Σ | +1
− | +1 ≤ ≤
Yonsei University 28/00 Contents • Motivation • Level Set Method
• Numerical Schemes • Conclusion • Level Set Reinitialization
Yonsei University 29/00 Advantange/Disadvantage • • • Γ , =
0 • •
Yonsei University 30/00 Summary of Algorithm (, 0) ( +
⋅ ∇ = 0) ( ⋅ ∇) = +1 (1 − ∇ )
Yonsei University 31/00 Reference • • • • •
Yonsei University 32/00 Reference (Image) • • • • •
• • • • •
Yonsei University 33/00 Reference (Image) • •